Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 13(40): 47696-47705, 2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34585914

RESUMEN

Nickel-rich lithium metal oxide cathode materials have recently be en highlighted as next-generation cathodes for lithium-ion batteries. Nevertheless, their relatively high surface reactivity must be controlled, as fading of the cycling retention occurs rapidly in the cells. This paper proposes functionalized nickel-rich lithium metal oxide cathode materials by a multipurpose nanosized inorganic material-titanium silicon oxide-via a simple thermal treatment process. We examined the topologies of the nano-titanium silicate-functionalized nickel-rich lithium metal oxide cathodes with scanning electron microscopy and quantitatively analyzed their improved mechanical properties using microindentation. The cell containing nickel-rich lithium metal oxide cathodes suffered from poor cycling behavior as the electrolytes persistently decomposed; however, this behavior was effectively inhibited in the cell by nano-titanium silicate-functionalized nickel-rich lithium metal oxide cathodes. Further ex situ analyses indicated that the particle hardness of the nano-titanium silicate-functionalized nickel-rich lithium metal oxide cathode materials was maintained, and decomposition of the electrolyte by the dissolution of transition metals was thoroughly inhibited even after 100 cycles. Based on these results, we concluded that the use of nano-titanium silicate as a coating material for nickel-rich lithium metal oxide cathode materials is an effective way to enhance the cycling performance of lithium-ion batteries.

2.
J Microbiol ; 50(2): 270-7, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22538656

RESUMEN

Using yeast two-hybrid assay, we investigated protein-protein interactions between all orthologous histidine kinase (HK)/response regulator (RR) pairs of M. tuberculosis H37Rv and identified potential protein-protein interactions between a noncognate HK/RR pair, DosT/NarL. The protein interaction between DosT and NarL was verified by phosphotransfer reaction from DosT to NarL. Furthermore, we found that the DosT and DosS HKs, which share considerable sequence similarities to each other and form a two-component system with the DosR RR, have different cross-interaction capabilities with NarL: DosT interacted with NarL, while DosS did not. The dimerization domains of DosT and DosS were shown to be sufficient to confer specificity for DosR, and the different cross-interaction abilities of DosS and DosT with NarL were demonstrated to be attributable to variations in the amino acid sequences of the α2-helices of their dimerization domains.


Asunto(s)
Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Mycobacterium tuberculosis/enzimología , Proteínas Quinasas/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Histidina Quinasa , Datos de Secuencia Molecular , Mycobacterium tuberculosis/genética , Unión Proteica , Proteínas Quinasas/genética , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA