Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(35): 46719-46727, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39177440

RESUMEN

Interfacial interactions between polymers and fillers play a crucial role in determining the performance of composite materials. In this study, mechano-responsive spiropyran (SP) beads, which exhibit fluorescence changes under stress, serve as force probes to evaluate force transfer efficiency across two types of interfaces: noncovalent and covalent. These interfaces are engineered by respectively employing physical blending and grafting polymerization to integrate hydroxyl SP beads with a polyurethane (PU) matrix. A custom-built in situ opto-mechanical setup quantitatively assesses force transfer by monitoring changes in fluorescence intensity and peak wavelength during specimen stretching. The analysis reveals that the covalent interface significantly outperforms the noncovalent interface, demonstrating a 100% improvement in force magnitude and transfer rate from the PU matrix to the SP beads. Direct observation of SP beads within the PU matrix during tension unveils that enhanced force transfer efficiency is closely linked to changes in the SP beads' aspect ratio. Fluorescence changes in SP beads are solely a function of aspect ratio, making them effective independent force probes.

2.
ACS Omega ; 8(24): 21514-21521, 2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37360428

RESUMEN

Highly crystalline double-walled boron nitride nanotubes (DWBNNTs ∼60%) were synthesized from ammonia borane (AB; H3B-NH3) precursors using a high-temperature thermal plasma method. The differences between the synthesized BNNTs using the hexagonal boron nitride (h-BN) precursor and AB precursor were compared using various techniques such as thermogravimetric analysis, X-ray diffraction, Fourier transform infrared spectroscopy, Raman spectroscopy, scanning electron microscopy, transmission electron microscopy, and in situ optical emission spectroscopy (OES). The synthesized BNNTs were longer and had fewer walls when the AB precursor was used than when the conventional method was used (with the h-BN precursor). The production rate significantly improved from ∼20 g/h (h-BN precursor) to ∼50 g/h (AB precursor), and the content of amorphous boron impurities was significantly reduced, implying a self-assembly mechanism of BN radicals rather than the conventional mechanism involving boron nanoballs. Through this mechanism, the BNNT growth, which was accompanied by an increased length, a decreased diameter, and a high growth rate, could be understood. The findings were also supported by in situ OES data. Considering the increased production yield, this synthesis method using AB precursors is expected to make an innovative contribution to the commercialization of BNNTs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA