Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Food Chem ; 459: 140281, 2024 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-39047543

RESUMEN

N-Nitrosamines (NAs) pose a threat to food safety due to their carcinogenic and mutagenic properties. In this study, we developed and validated a QuEChERS-based LC-MS/MS method for the simultaneous analysis of 11 NAs in 74 processed fish meat, processed meat, and salted fish products. Sample preparation was optimized by screening two versions of QuEChERS buffer, four extraction methods, and eight purification methods. The optimal analytical approach was validated for three product categories in terms of linearity, matrix effects, accuracy, and precision. Satisfactory precision and accuracy were demonstrated, with relative recoveries of 70-120% for the 11 NAs. The limits of detection for fish meat, processed meat, and salted fish products were 0.12-7.50, 0.12-4.14, and 0.10-7.81 ng·g-1, respectively. Among the 11 NAs, nine were detected in all 74 samples. This methodology could be applied to monitor NA levels to ensure the safety and quality of food products.


Asunto(s)
Productos Pesqueros , Peces , Contaminación de Alimentos , Cromatografía Líquida con Espectrometría de Masas , Productos de la Carne , Nitrosaminas , Animales , Cromatografía Líquida de Alta Presión , Productos Pesqueros/análisis , Contaminación de Alimentos/análisis , Límite de Detección , Cromatografía Líquida con Espectrometría de Masas/métodos , Productos de la Carne/análisis , Nitrosaminas/análisis , Espectrometría de Masas en Tándem/métodos
2.
Carbohydr Res ; 540: 109125, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38703663

RESUMEN

Di-d-psicose anhydride (DPA), derived from functional rare saccharide as d-psicose, is investigated for its strong chelating ability. Methylglyoxal (MGO), an important precursor of advanced glycation end-products (AGEs), promotes obesity, and causes complications such as diabetic nephropathy. On mesangial cells, DPA can substantially reduce the negative effects of MGO. DPA effectively trapping MGO in mesangial cells. The bonding properties of the DPA-MGO adduct were discussed by mass spectrometry and nuclear magnetic resonance (NMR). The NMR spectra of the DPA-MGO adduct provide evidence for chelation bonding. The inhibition of AGE formation and the mass spectrometry results of the DPA-MGO adduct indicate that DPA can scavenge MGO at a molar ratio of 1:1. DPA suppressed 330 % of the up-regulated receptor for an AGEs protein expression to a normal level and restored the suppressed glyoxalase 1 level to 86 % of the normal group. This research provides important evidence and theoretical basis for the development of AGE inhibitors derived from rare saccharide.


Asunto(s)
Nefropatías Diabéticas , Productos Finales de Glicación Avanzada , Piruvaldehído , Piruvaldehído/química , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/prevención & control , Productos Finales de Glicación Avanzada/metabolismo , Productos Finales de Glicación Avanzada/antagonistas & inhibidores , Células Mesangiales/efectos de los fármacos , Células Mesangiales/metabolismo , Lactoilglutatión Liasa/antagonistas & inhibidores , Lactoilglutatión Liasa/metabolismo , Humanos , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Receptor para Productos Finales de Glicación Avanzada/antagonistas & inhibidores , Anhídridos/química , Quelantes/química , Quelantes/farmacología
3.
Int J Biol Macromol ; 269(Pt 2): 131927, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38685538

RESUMEN

The accumulation of methylglyoxal (MGO) produced in high-temperature processed foods and excessive production in the body contributes to intestinal barrier dysfunction. In this study, we investigated the effects of chitooligosaccharides (COSs) of different molecular weights (<1 kDa, 1-3 kDa, 3-5 kDa, 5-10 kDa, and >10 kDa) on MGO-induced intestinal barrier dysfunction. We investigated the effect of COSs on inhibiting intracellular MGO accumulation/MGO-derived AGEs production and regulating the receptor for AGE (RAGE)-mediated downstream protein expression, including proteins related to apoptosis and inflammation, intestinal barrier integrity, and paracellular permeability. Pretreatment with COSs ameliorated MGO-induced increased RAGE protein expression, activation of apoptotic cascade/inflammatory response, loss of intestinal epithelial barrier integrity, and increased paracellular permeability, ameliorating intestinal dysfunction through MGO scavenging. 1-3 kDa COSs most effectively ameliorated MGO-induced intestinal dysfunction. Our results suggest the potential of COSs in improving intestinal health by ameliorating intestinal barrier dysfunction by acting as an MGO scavenger and highlighting the need for the optimization of the molecular weight of COSs to optimize its protective effects.


Asunto(s)
Quitosano , Productos Finales de Glicación Avanzada , Mucosa Intestinal , Peso Molecular , Oligosacáridos , Piruvaldehído , Receptor para Productos Finales de Glicación Avanzada , Oligosacáridos/farmacología , Oligosacáridos/química , Productos Finales de Glicación Avanzada/metabolismo , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Animales , Quitosano/farmacología , Quitosano/química , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Humanos , Intestinos/efectos de los fármacos , Intestinos/patología , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Inflamación/inducido químicamente , Apoptosis/efectos de los fármacos , Quitina/farmacología , Quitina/análogos & derivados , Quitina/química , Permeabilidad/efectos de los fármacos
4.
Nutrients ; 15(24)2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38140279

RESUMEN

Aralia continentalis exhibits various biological activities; however, their sleep-promoting effects have not been previously reported. In this study, we evaluated the hypnotic effects and sleep-wake profiles of A. continentalis root (KS-126) using a pentobarbital-induced sleep-acceleration test and polysomnographic recordings. Additionally, we investigated the molecular mechanism of KS-126 through patch-clamp electrophysiology. Our polysomnographic recordings revealed that KS-126 not only accelerated the onset of non-rapid eye movement sleep (NREMS) but also extends its duration. Considering the temporal dynamics of the sleep-wake stages, during the initial and subsequent periods KS-126 extended NREMS duration and decreased wakefulness, thereby enhancing sleep-promoting effects. Furthermore, the assessment of sleep quality via analysis of electroencephalogram power density indicated that KS-126 did not significantly alter sleep intensity. Finally, we found that KS-126 enhanced GABAA receptor-mediated synaptic responses in primary hippocampal neurons, leading to an increase in the percentage of the GABA current. This effect was not affected by the selective benzodiazepine receptor antagonist flumazenil, but was entirely inhibited by the GABAA receptor antagonist bicuculline. In conclusion, KS-126 extends the duration of NREMS without altering its intensity by prolonging GABAergic synaptic transmission, which modulates GABAA receptor function.


Asunto(s)
Aralia , Receptores de GABA-A , Movimientos Oculares , Sueño/fisiología , Ácido gamma-Aminobutírico/farmacología
5.
Mol Nutr Food Res ; 67(20): e2200768, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37658489

RESUMEN

SCOPE: Cinnamon is a commonly used spice and herb that is rich in polyphenols. Due to the limited bioavailability of oral polyphenols, it remains unclear to which extent they can reach cells and exert a biological effect. This study aims to investigate the impact of bioavailable cinnamon polyphenols on lipopolysaccharide (LPS)-stimulated macrophages. METHODS AND RESULTS: A polyphenol fraction is prepared from cinnamon (Cinnamomi ramulus) (CRPF) by boiling cinnamon in water and adsorbing the extract onto a hydrophobic resin. Mice are orally administered CRPF for 7 days and then subjected to three independent experiments: endotoxemia, serum collection, and macrophage isolation. Upon intraperitoneal lipopolysaccharide challenge, CRPF decreases serum levels of inflammatory cytokines, involving suppression of liver and spleen macrophages. When normal macrophages are cultured in serum obtained from CRPF-treated mice, they exhibit an anti-inflammatory phenotype. However, macrophages from CRPF-treated mice show an increased production of inflammatory cytokines when cultured in fetal bovine serum and stimulated with LPS. CONCLUSION: The study provides evidence for the presence of bioavailable cinnamon polyphenols with anti-inflammatory properties and macrophage activation. These findings suggest that cinnamon polyphenols have the potential to modulate macrophage function, which could have implications for reducing inflammation and improving immune function.


Asunto(s)
Lipopolisacáridos , Polifenoles , Ratones , Animales , Polifenoles/farmacología , Lipopolisacáridos/toxicidad , Cinnamomum zeylanicum/química , Activación de Macrófagos , Citocinas/genética , Antiinflamatorios/farmacología , Extractos Vegetales/farmacología
6.
J Agric Food Chem ; 71(5): 2430-2437, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36701419

RESUMEN

Soybean isoflavone aglycones (SIAs) have many biological activities but are poorly water-soluble in the human body. Glycosylation provides structural diversity to SIAs and can alter their physicochemical properties, including water solubility. An alpha-linked glucosylation of SIA was achieved using amylosucrase from Deinococcus geothermalis. A total of 13 alpha-linked glucosyl SIAs were obtained, and their colors in solution were confirmed. The structures of the isolated compounds were identified by mass spectrometry and multidimensional nuclear magnetic resonance spectroscopy. The amylosucrase transglycosylation formed new isoflavone glycosides with alpha glycosidic bonds at C-7 and/or C-4' of SIAs, followed by the production of isoflavone glycosides with alpha (1 → 6) glycosidic bonds. The products with a glucosyl moiety attached to the C-4' of SIAs were found to be more water-soluble than their counterparts attached to the C-7 and/or beta-linkages. This study suggests a strategy for the synthesis of bioactive compounds with enhanced water solubility through alpha-linked glucosylation.


Asunto(s)
Glucósidos , Isoflavonas , Glucósidos/química , Glucosiltransferasas/química , Glicósidos/química , Isoflavonas/química , Glycine max , Glicosilación
7.
Biofactors ; 49(2): 415-427, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36573713

RESUMEN

Rosa gallica has been previously reported to display anti-inflammatory, anti-oxidative, and anti-skin wrinkle activities. However, the effect of Rosa gallica on skin hydration and its active components are largely unknown. Herein, we aimed to investigate the skin hydration effect of rose petal extract (RPE) in humans and elucidate the underlying molecular mechanism. A double-blinded clinical study was performed to investigate the effect of RPE on skin hydration. Stratum corneum moisture analysis demonstrated that RPE treatment significantly improved hydration levels in human skin. Furthermore, HAS2 and hyaluronic acid levels were notably increased by RPE in keratinocytes and 3D human skin equivalent model. By comparing the modulatory effect on HAS2 expression, cyanidin-3,5-O-diglucoside (CDG) was identified as the most potent compound in RPE likely responsible for skin hydration. The kinase activity of GLK, an upstream regulator of MAPK signaling, was increased by CDG in a dose-dependent manner. Importantly, silencing GLK reversed CDG-mediated HAS2 upregulation, further supporting the involvement of GLK in the CDG-mediated effects. Binding of CDG to GLK was confirmed by pull-down assay and computer modeling. These findings suggest that RPE and its active component CDG increases skin hydration by upregulating HAS2 expression through modulating the GLK-MAP2K-MAPK signaling pathway.


Asunto(s)
Rosa , Humanos , Transducción de Señal , Antocianinas/farmacología , Queratinocitos
8.
Int J Mol Sci ; 23(21)2022 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-36361617

RESUMEN

Demand for healthy diets has led researchers to explore new saccharide as sucrose alternatives. ᴅ-Psicose, the C-3 epimer of ᴅ-fructose, has a similar sweetness intensity to sucrose but contributes fewer calories. This study proposes a disaccharide with a stable structure derived from ᴅ-psicose. The compound with a spiro-tricyclic core was generated at 32% conversion via caramelization of ᴅ-psicose under acidic anhydrous conditions. The compound was identified by high-resolution mass spectrometry and multi-dimensional nuclear magnetic resonance (NMR). The molecular formula was established as C12H20O10 from the molecular weight of m/z 324.1055. Twelve signals were observed by the 13C NMR spectrum. This compound, denoted di-ᴅ-psicose anhydride (DPA), exhibited a lower water solubility (40 g/L) and higher thermal stability (peak temperature = 194.7 °C) than that of ᴅ-psicose (peak temperature = 126.5 °C). The quantitatively evaluated metal ion scavenging ability of DPA was the best in magnesium (average 98.6 ± 1.1%). This synthesis methodology can provide disaccharides with high stability-reducing heavy metals.


Asunto(s)
Anhídridos , Fructosa , Fructosa/química , Sacarosa , Glicoconjugados
9.
Food Sci Biotechnol ; 31(7): 787-796, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35720463

RESUMEN

Chlorophyll-rich samples, such as kale, interfere with the analysis of residual pesticides and adversely affect the integrity of tandem mass spectrometers. Dispersed solid-phase (d-SPE) extraction using graphitized carbon black effectively removes pigments from kale extracts; however, it also reduces the recoveries of 30 pesticides. To overcome this, alternative sorbents, including ENVI-Carb, ChloroFiltr, and Z-Sep+, were evaluated in this study. A sorbent combination based on 50 mg of Z-Sep+ was most advantageous (21/30), good precision (< 15%), excellent pigment removal capacity, and low matrix effect. The limit of quantification (0.0001-0.0040 mg/kg) was lower than the Korean maximum residue limits levels. The proposed method was validated according to international guidelines and applied to real kale samples. The results demonstrated that d-SPE using Z-Sep+ provides an effective strategy for ensuring mass spectrometry system integrity and improving the analytical accuracy in chlorophyll-rich samples. Supplementary information: The online version contains supplementary material available at 10.1007/s10068-022-01101-3.

10.
Food Sci Biotechnol ; 31(2): 165-174, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35186347

RESUMEN

This study was designed to determine the residual trichothecene mycotoxins in cereal samples. The optimal solvent for extraction was 84% (v/v) aqueous acetonitrile with 1% (v/v) formic acid. The best performing clean-up method was dispersive-solid phase with a mixture octadecyl silica and primary-secondary amine. The recoveries for the studied mycotoxins ranged from 83.3 to 92.8%. The methodology was successfully applied for monitoring 100 cereal samples obtained from a Korean market. The bean sample were found to be co-contamination with deoxynivalenol and HT-2 toxin. Deoxynivalenol possessed the highest detection freauency (4/100) and amount (727.38 µg/kg) among the trichothecene mycotoxins. The hazard index was less than 1.0 for all the observed mycotoxins in all cereal samples except one white rice sample (1.2681). This results indicated that periodic risk assessments of trichothecene mycotoxin through cereal intake are necessary for the health and safety.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA