RESUMEN
Aim: The design, synthesis, docking studies and evaluation of the in vitro antifungal and cytotoxic properties of eugenol (EUG) containing 1,2,3-triazole derivatives are reported. Most of the derivatives have not been reported.Materials & methods: The EUG derivatives were synthesized, molecular docked and tested for their antifungal activity.Results: The compounds showed potent antifungal activity against Trichophyton rubrum, associated with dermatophytosis. Compounds 2a and 2i exhibited promising results, with 2a being four-times more potent than EUG. The binding mode prediction was similar to itraconazole in the lanosterol-14-α-demethylase wild-type and G73E mutant binding sites. Additionally, the pharmacokinetic profile prediction suggests good gastrointestinal absorption and potential oral administration.Conclusion: Compound 2a is a promising antifungal agent against dermatophytosis caused by T. rubrum.
[Box: see text].
Asunto(s)
Antifúngicos , Diseño de Fármacos , Eugenol , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Triazoles , Eugenol/farmacología , Eugenol/química , Eugenol/síntesis química , Eugenol/análogos & derivados , Triazoles/química , Triazoles/farmacología , Triazoles/síntesis química , Antifúngicos/farmacología , Antifúngicos/síntesis química , Antifúngicos/química , Humanos , Trichophyton/efectos de los fármacos , Relación Estructura-Actividad , Estructura MolecularRESUMEN
A series of 19 novel eugenol derivatives containing a 1,2,3-triazole moiety was synthesized via a two-step process, with the key step being a copper(I)-catalyzed azide-alkyne cycloaddition reaction. The compounds were assessed for their antifungal activities against Colletotrichum gloeosporioides, the causative agent of papaya anthracnose. Triazoles 2k, 2m, 2l, and 2n, at 100 ppm, were the most effective, reducing mycelial growth by 88.3, 85.5, 82.4, and 81.4%, respectively. Molecular docking calculations allowed us to elucidate the binding mode of these derivatives in the catalytic pocket of C. gloeosporioides CYP51. The best-docked compounds bind closely to the heme cofactor and within the channel access of the lanosterol (LAN) substrate, with crucial interactions involving residues Tyr102, Ile355, Met485, and Phe486. From such studies, the antifungal activity is likely attributed to the prevention of substrate LAN entry by the 1,2,3-triazole derivatives. The triazoles derived from natural eugenol represent a novel lead in the search for environmentally safe agents for controlling C. gloeosporioides.
Asunto(s)
Carica , Colletotrichum , Eugenol , Fungicidas Industriales , Simulación del Acoplamiento Molecular , Enfermedades de las Plantas , Triazoles , Colletotrichum/efectos de los fármacos , Eugenol/farmacología , Eugenol/química , Carica/química , Fungicidas Industriales/farmacología , Fungicidas Industriales/química , Fungicidas Industriales/síntesis química , Triazoles/química , Triazoles/farmacología , Triazoles/síntesis química , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Relación Estructura-Actividad , Diseño de Fármacos , Proteínas Fúngicas/química , Estructura MolecularRESUMEN
Aim: The assessment of the antileishmanial potential of 22 vanillin-containing 1,2,3-triazole derivatives against Leishmania braziliensis is reported. Materials & methods: Initial screening was performed against the parasite promastigote form. The most active compound, 4b, targeted parasites within amastigotes (IC50 = 4.2 ± 1.0 µmol l-1), presenting low cytotoxicity and a selective index value of 39. 4D quantitative structure-activity relationship and molecular docking studies provided insights into structure-activity and biological effects. Conclusion: A vanillin derivative with significant antileishmanial activity was identified. Enhanced activity was linked to increased electrostatic and Van der Waals interactions near the benzyl ring of the derivatives. Molecular docking indicated the inhibition of the Leishmania amazonensis sterol 14α-demethylase, using Leishmania infantum sterol 14α-demethylase as a model, without affecting the human isoform. Inhibition was active site competition with lanosterol.
Asunto(s)
Antiprotozoarios , Benzaldehídos , Relación Estructura-Actividad Cuantitativa , Humanos , Simulación del Acoplamiento Molecular , Antiprotozoarios/farmacología , Antiprotozoarios/química , Triazoles/farmacología , Esteroles , Relación Estructura-ActividadRESUMEN
Vanillin is the main component of natural vanilla extract and is responsible for its flavoring properties. Besides its well-known applications as an additive in food and cosmetics, it has also been reported that vanillin can inhibit fungi of clinical interest, such as Candida spp., Cryptococcus spp., Aspergillus spp., as well as dermatophytes. Thus, the present work approaches the synthesis of a series of vanillin derivatives with 1,2,3-triazole fragments and the evaluation of their antifungal activities against Candida albicans, Candida glabrata, Candida parapsilosis, Candida tropicalis, Cryptococcus neoformans, Cryptococcus gattii, Trichophyton rubrum, and Trichophyton interdigitale strains. Twenty-two vanillin derivatives were obtained, with yields in the range of 60%-91%, from copper(I)-catalyzed alkyne-azide cycloaddition (CuAAC) click reaction between two terminal alkynes prepared from vanillin and different benzyl azides. In general, the evaluated compounds showed moderate activity against the microorganisms tested, with minimum inhibitory concentration (MIC) values ranging from 32 to >512 µg mL-1 . Except for compound 3b against the C. gattii R265 strain, all vanillin derivatives showed fungicidal activity for the yeasts tested. The predicted physicochemical and ADMET (absorption, distribution, metabolism, excretion, and toxicity) properties for the compounds indicated favorable profiles for drug development. In addition, a four-dimensional structure-activity relationship (4D-SAR) analysis was carried out and provided useful insights concerning the structures of the compounds and their biological profile. Finally, molecular docking calculations showed that all compounds bind favorably at the lanosterol 14α-demethylase enzyme active site with binding energies ranging from -9.1 to -12.2 kcal/mol.
Asunto(s)
Fungicidas Industriales , Fungicidas Industriales/farmacología , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad , Antifúngicos/química , Triazoles/farmacología , Pruebas de Sensibilidad MicrobianaRESUMEN
As has been documented numerous times over the years, nuclear magnetic resonance (NMR) experiments are intrinsically quantitative. Still, quantitative NMR methods have not been widely adopted or largely introduced into pharmacopoeias. Here, we describe the quantitative interpretation of the 1D proton NMR experiment using only absolute signal intensities with the variation of common experimental parameters and their application.
RESUMEN
Structure elucidation with NMR correlation data is dicey, as there is no way to tell how ambiguous the data set is and how reliably it will define a constitution. Many different software tools for computer assisted structure elucidation (CASE) have become available over the past decades, all of which could ensure a better quality of the elucidation process, but their use is still not common. Since 2011, WebCocon has integrated the possibility to generate theoretical NMR correlation data, starting from an existing structural proposal, allowing this theoretical data then to be used for CASE. Now, WebCocon can also read the recently presented NMReDATA format, allowing for uncomplicated access to CASE with experimental data. With these capabilities, WebCocon presents itself as an easily accessible Web-Tool for the quality control of proposed new natural products. Results of this application to several molecules from literature are shown and demonstrate how CASE can contribute to improve the reliability of Structure elucidation with NMR correlation data.
Asunto(s)
Productos Biológicos/análisis , Resonancia Magnética Nuclear Biomolecular , Control de Calidad , Programas InformáticosRESUMEN
The endophytic fungus Mycosphaerella sp. (UFMGCB2032) was isolated from the healthy leaves of Eugenia bimarginata, a plant from the Brazilian savanna. Two novel usnic acid derivatives, mycousfuranine (1) and mycousnicdiol (2), were isolated from the ethyl acetate extract, and their structure was elucidated by NMR and MS analyses. Compounds 1 and 2 exhibited moderate antifungal activities against Cryptococcus neoformans and Cryptococcus gattii, each with minimum inhibitory concentration values of 50.0 µg/mL and 250.0 µg/mL, respectively.
Asunto(s)
Antifúngicos/farmacología , Ascomicetos/química , Benzofuranos/farmacología , Antifúngicos/análisis , Ascomicetos/patogenicidad , Benzofuranos/análisis , Cryptococcus/efectos de los fármacos , Eugenia/microbiologíaRESUMEN
The constitutional assignment of natural products by NMR spectroscopy is usually based on 2D NMR experiments like COSY, HSQC, and HMBC. The difficulty of a structure elucidation problem depends more on the type of the investigated molecule than on its size. Saturated compounds can usually be assigned unambiguously by hand using only COSY and 13C-HMBC data, whereas condensed heterocycles are problematic due to their lack of protons that could show interatomic connectivities. Different computer programs were developed to aid in the structural assignment process, one of them COCON. In the case of unsaturated and substituted molecules structure generators frequently will generate a very large number of possible solutions. This article presents a "statistical filter" for the reduction of the number of results. The filter works by generating 3D conformations using smi23d, a simple MD approach. All molecules for which the generation of constitutional restraints failed were eliminated from the result set. Some structural elements removed by the statistical filter were analyzed and checked against Beilstein. The automatic removal of molecules for which no MD parameter set could be created was included into WEBCOCON. The effect of this filter varies in dependence of the NMR data set used, but in no case the correct constitution was removed from the resulting set.
RESUMEN
The constitutional assignment of natural products by NMR spectroscopy is usually based on 2D NMR experiments like COSY, HSQC, and HMBC. The actual difficulty of the structure elucidation problem depends more on the type of the investigated molecule than on its size. The moment HMBC data is involved in the process or a large number of heteroatoms is present, a possibility of multiple solutions fitting the same data set exists. A structure elucidation software can be used to find such alternative constitutional assignments and help in the discussion in order to find the correct solution. But this is rarely done. This article describes the use of theoretical NMR correlation data in the structure elucidation process with WEBCOCON, not for the initial constitutional assignments, but to define how well a suggested molecule could have been described by NMR correlation data. The results of this analysis can be used to decide on further steps needed to assure the correctness of the structural assignment. As first step the analysis of the deviation of carbon chemical shifts is performed, comparing chemical shifts predicted for each possible solution with the experimental data. The application of this technique to three well known compounds is shown. Using NMR correlation data alone for the description of the constitutions is not always enough, even when including 13C chemical shift prediction.