Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Tipo de estudio
Intervalo de año de publicación
1.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-499114

RESUMEN

SARS-CoV-2 Omicron sublineages have escaped most RBD-targeting therapeutic neutralizing antibodies (NAbs), which proves the previous NAb drug screening strategies deficient against the fast-evolving SARS-CoV-2. Better broad NAb drug candidate selection methods are needed. Here, we describe a rational approach for identifying RBD-targeting broad SARS-CoV-2 NAb cocktails. Based on high-throughput epitope determination, we propose that broad NAb drugs should target non-immunodominant RBD epitopes to avoid herd immunity-directed escape mutations. Also, their interacting antigen residues should focus on sarbecovirus conserved sites and associate with critical viral functions, making the antibody-escaping mutations less likely to appear. Following the criteria, a featured non-competing antibody cocktail, SA55+SA58, is identified from a large collection of broad sarbecovirus NAbs isolated from SARS convalescents. SA55+SA58 potently neutralizes ACE2-utilizing sarbecoviruses, including circulating Omicron variants, and could serve as broad SARS-CoV-2 prophylactics to offer long-term protection. Our screening strategy can also be applied to identify broad-spectrum NAb drugs against other fast-evolving viruses, such as influenza viruses.

2.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-489997

RESUMEN

SARS-CoV-2 Omicron sublineages BA.2.12.1, BA.4 and BA.5 exhibit higher transmissibility over BA.21. The new variants receptor binding and immune evasion capability require immediate investigation. Here, coupled with Spike structural comparisons, we show that BA.2.12.1 and BA.4/BA.5 exhibit comparable ACE2-binding affinities to BA.2. Importantly, BA.2.12.1 and BA.4/BA.5 display stronger neutralization evasion than BA.2 against the plasma from 3-dose vaccination and, most strikingly, from post-vaccination BA.1 infections. To delineate the underlying antibody evasion mechanism, we determined the escaping mutation profiles2, epitope distribution3 and Omicron neutralization efficacy of 1640 RBD-directed neutralizing antibodies (NAbs), including 614 isolated from BA.1 convalescents. Interestingly, post-vaccination BA.1 infection mainly recalls wildtype-induced humoral memory. The resulting elicited antibodies could neutralize both wildtype and BA.1 and are enriched on non-ACE2-competing epitopes. However, most of these cross-reactive NAbs are heavily escaped by L452Q, L452R and F486V. BA.1 infection can also induce new clones of BA.1-specific antibodies that potently neutralize BA.1; nevertheless, these NAbs are largely escaped by BA.2/BA.4/BA.5 due to D405N and F486V, and react weakly to pre-Omicron variants, exhibiting poor neutralization breadths. As for therapeutic NAbs, Bebtelovimab4 and Cilgavimab5 can effectively neutralize BA.2.12.1 and BA.4/BA.5, while the S371F, D405N and R408S mutations would undermine most broad sarbecovirus NAbs. Together, our results indicate that Omicron may evolve mutations to evade the humoral immunity elicited by BA.1 infection, suggesting that BA.1-derived vaccine boosters may not achieve broad-spectrum protection against new Omicron variants.

3.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-479349

RESUMEN

Omicron sub-lineage BA.2 has rapidly surged globally, accounting for over 60% of recent SARS-CoV-2 infections. Newly acquired RBD mutations and high transmission advantage over BA.1 urge the investigation of BA.2s immune evasion capability. Here, we show that BA.2 causes strong neutralization resistance, comparable to BA.1, in vaccinated individuals plasma. However, BA.2 displays more severe antibody evasion in BA.1 convalescents, and most prominently, in vaccinated SARS convalescents plasma, suggesting a substantial antigenicity difference between BA.2 and BA.1. To specify, we determined the escaping mutation profiles1,2 of 714 SARS-CoV-2 RBD neutralizing antibodies, including 241 broad sarbecovirus neutralizing antibodies isolated from SARS convalescents, and measured their neutralization efficacy against BA.1, BA.1.1, BA.2. Importantly, BA.2 specifically induces large-scale escape of BA.1/BA.1.1-effective broad sarbecovirus neutralizing antibodies via novel mutations T376A, D405N, and R408S. These sites were highly conserved across sarbecoviruses, suggesting that Omicron BA.2 arose from immune pressure selection instead of zoonotic spillover. Moreover, BA.2 reduces the efficacy of S309 (Sotrovimab)3,4 and broad sarbecovirus neutralizing antibodies targeting the similar epitope region, including BD55-5840. Structural comparisons of BD55-5840 in complexes with BA.1 and BA.2 spike suggest that BA.2 could hinder antibody binding through S371F-induced N343-glycan displacement. Intriguingly, the absence of G446S mutation in BA.2 enabled a proportion of 440-449 linear epitope targeting antibodies to retain neutralizing efficacy, including COV2-2130 (Cilgavimab)5. Together, we showed that BA.2 exhibits distinct antigenicity compared to BA.1 and provided a comprehensive profile of SARS-CoV-2 antibody escaping mutations. Our study offers critical insights into the humoral immune evading mechanism of current and future variants.

4.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-470392

RESUMEN

The SARS-CoV-2 B.1.1.529 variant (Omicron) contains 15 mutations on the receptor-binding domain (RBD). How Omicron would evade RBD neutralizing antibodies (NAbs) requires immediate investigation. Here, we used high-throughput yeast display screening1,2 to determine the RBD escaping mutation profiles for 247 human anti-RBD NAbs and showed that the NAbs could be unsupervised clustered into six epitope groups (A-F), which is highly concordant with knowledge-based structural classifications3-5. Strikingly, various single mutations of Omicron could impair NAbs of different epitope groups. Specifically, NAbs in Group A-D, whose epitope overlap with ACE2-binding motif, are largely escaped by K417N, G446S, E484A, and Q493R. Group E (S309 site)6 and F (CR3022 site)7 NAbs, which often exhibit broad sarbecovirus neutralizing activity, are less affected by Omicron, but still, a subset of NAbs are escaped by G339D, N440K, and S371L. Furthermore, Omicron pseudovirus neutralization showed that single mutation tolerating NAbs could also be escaped due to multiple synergetic mutations on their epitopes. In total, over 85% of the tested NAbs are escaped by Omicron. Regarding NAb drugs, the neutralization potency of LY-CoV016/LY-CoV555, REGN10933/REGN10987, AZD1061/AZD8895, and BRII-196 were greatly reduced by Omicron, while VIR-7831 and DXP-604 still function at reduced efficacy. Together, data suggest Omicron would cause significant humoral immune evasion, while NAbs targeting the sarbecovirus conserved region remain most effective. Our results offer instructions for developing NAb drugs and vaccines against Omicron and future variants.

5.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-454402

RESUMEN

The spread of the SARS-CoV-2 variants could seriously dampen the global effort to tackle the COVID-19 pandemic. Recently, we investigated the humoral antibody responses of SARS-CoV-2 convalescent patients and vaccinees towards circulating variants, and identified a panel of monoclonal antibodies (mAbs) that could efficiently neutralize the B.1.351 (Beta) variant. Here we investigate how these mAbs target the B.1.351 spike protein using cryo-electron microscopy. In particular, we show that two superpotent mAbs, BD-812 and BD-836, have non-overlapping epitopes on the receptor-binding domain (RBD) of spike. Both block the interaction between RBD and the ACE2 receptor; and importantly, both remain fully efficacious towards the B.1.617.1 (Kappa) and B.1.617.2 (Delta) variants. The BD-812/BD-836 pair could thus serve as an ideal antibody cocktail against the SARS-CoV-2 VOCs.

6.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-438924

RESUMEN

The ongoing pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been endangering worldwide public health and economy. SARS-CoV-2 infects a variety of tissues where the known receptor ACE2 is low or almost absent, suggesting the existence of alternative pathways for virus entry. Here, we performed a genome-wide barcoded-CRISPRa screen to identify novel host factors that enable SARS-CoV-2 infection. In addition to known host proteins, i.e. ACE2, TMPRSS2 and NRP1, we identified multiple host components, among which LDLRAD3, TMEM30A and CLEC4G were confirmed as functional receptors for SARS-CoV-2. All these membrane proteins bind directly to spikes N-terminal domain (NTD). Their essential and physiological roles have all been confirmed in either neuron or liver cells. In particular, LDLRAD3 and CLEC4G mediate SARS-CoV-2 entry and infection in a fashion independent of ACE2. The identification of the novel receptors and entry mechanisms could advance our understanding of the multiorgan tropism of SARS-CoV-2, and may shed light on the development of the therapeutic countermeasures against COVID-19.

7.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-195263

RESUMEN

Understanding the mechanism of neutralizing antibodies (NAbs) against SARS-CoV-2 is critical for effective vaccines and therapeutics development. We recently reported an exceptionally potent NAb, BD-368-2, and revealed the existence of VH3-53/VH3-66 convergent NAbs in COVID-19. Here we report the 3.5-[A] cryo-EM structure of BD-368-2s Fabs in complex with a mutation-induced prefusion-state-stabilized spike trimer. Unlike VH3-53/VH3-66 NAbs, BD-368-2 fully blocks ACE2 binding by occupying all three receptor-binding domains (RBDs) simultaneously, regardless of their "up" and "down" positions. BD-368-2 also triggers fusogenic-like structural rearrangements of the spike trimer, which could impede viral entry. Moreover, BD-368-2 completely avoids the common epitope of VH3-53/VH3-66 NAbs, evidenced by multiple crystal structures of their Fabs in tripartite complexes with RBD, suggesting a new way of pairing potent NAbs to prevent neutralization escape. Together, these results rationalize a unique epitope that leads to exceptional neutralization potency, and provide guidance for NAb therapeutics and vaccine designs against SARS-CoV-2.

8.
Protein & Cell ; (12): 373-382, 2016.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-757133

RESUMEN

The High Five cell line (BTI-TN-5B1-4) isolated from the cabbage looper, Trichoplusia ni is an insect cell line widely used for baculovirus-mediated recombinant protein expression. Despite its widespread application in industry and academic laboratories, the genomic background of this cell line remains unclear. Here we sequenced the transcriptome of High Five cells and assembled 25,234 transcripts. Codon usage analysis showed that High Five cells have a robust codon usage capacity and therefore suit for expressing proteins of both eukaryotic- and prokaryotic-origin. Genes involved in glycosylation were profiled in our study, providing guidance for engineering glycosylated proteins in the insect cells. We also predicted signal peptides for transcripts with high expression abundance in both High Five and Sf21 cell lines, and these results have important implications for optimizing the expression level of some secretory and membrane proteins.


Asunto(s)
Animales , Secuencia de Aminoácidos , Baculoviridae , Genética , Codón , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Glicosilación , Datos de Secuencia Molecular , Señales de Clasificación de Proteína , Genética , Proteínas Recombinantes , Genética , Células Sf9 , Spodoptera , Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...