Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 353: 141558, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38417486

RESUMEN

This study performed bench scale studies on anaerobic co-digestion of cheese whey and septage mixed with biochar (BC) as additive at various dosages (0.5 g, 1 g, 2 g and 4 g) and total solids (TS) concentrations (5%, 7.5%, 10%,12.5% and 15%). The experimental results revealed 29.58% increase in methane yield (486 ± 11.32 mL/gVS) with 27% reduction in lag phase time at 10% TS concentration and 50 g/L of BC loading. The mechanistic investigations revealed that BC improved process stability by virtue of its robust buffering capacity and mitigated ammonia inhibition. Statistical analysis indicates BC dosage had a more pronounced effect (P < 0.0001) compared to the impact of TS concentrations. Additionally, the results were modelled using Gompertz model (GM) and artificial neural network (ANN) algorithm, which revealed the outperformance of ANN over GM with MSE 17.96, R2 value 0.9942 and error 0.27%. These findings validated the practicality of utilizing a high dosage of BC in semi-solid anaerobic digestion conditions.


Asunto(s)
Carbón Orgánico , Queso , Suero Lácteo , Anaerobiosis , Metano , Reactores Biológicos , Redes Neurales de la Computación , Digestión , Biocombustibles
2.
J Environ Manage ; 347: 119132, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37778071

RESUMEN

Food waste (FW) is one of the major biomasses produced in large quantities in urban areas, which contributes to more than one-third of global greenhouse gas emissions. FW must be properly managed to minimize its environmental consequences. Hydrothermal carbonization (HTC) of FW is a promising technology compared to conventional methods. The objective of the present study is to maximize the mass yield (MY), higher heating value (HHV) and energy yield (EY) of FW by optimizing the operational variables of HTC process. Additionally, process water generated during HTC of FW under optimal conditions was evaluated for methane yield using anaerobic digestion. To optimize the HTC process, three operational variables, including solid-to-liquid (S/L) ratio, temperature, and reaction time, were manipulated using response surface methodology (RSM). According to RSM studies, the optimum operating conditions are 198.5 °C for 150 min with a 0.2 S/L ratio, resulting in MY, HHV and EY as 62.5%, 21.24 MJ/kg and 81.71%, respectively. Proximate and elemental analysis for the hydrochars synthesized at various operating conditions reveals that the temperature and reaction time have a significant impact on fixed carbon and carbon percentage. The anaerobic digestion results showed that the combination of process water and hydrochar, yielded a maximum cumulative methane production of 298.5 ± 16.34 mL/g COD. To mimic methane production, the modified Gompertz model was utilized. Thus, this finding contributes towards the commercialization of the HTC process to produce solid fuel (hydrochar) and provides a way to find an alternative energy source that enhances the HTC process and tackles the problem of process water disposal.


Asunto(s)
Alimentos , Eliminación de Residuos , Agua , Carbono , Temperatura , Metano
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...