Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Genesis ; 46(10): 537-45, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18802954

RESUMEN

Developing neural tubes are bilaterally symmetric in all vertebrate embryos, irrespective of the presence of gene networks that generate left-right asymmetry. To explore the mechanisms that underlie the bilaterally symmetric formation of the neural tube, we examined a medaka (Oryzias latipes) dominant mutant, Oot, the neural tube of which transiently lacks normal symmetry in the optic tectum. We found that spatial changes in isthmic fgf8 expression do not occur on one side of the mutant, resulting in a transient desynchronized expression that correlates with tectal asymmetry. The application of exogenous FGF8 on one side of a wild-type embryo mimics the Oot phenotype, indicating that the bilaterally equivalent expression of isthmic fgf8 is crucial for the bilaterally symmetric development of the tectum. These results suggest that tectal symmetry is not a "default" state, but rather is maintained actively by a bilaterally coupled and synchronized regulation of isthmic fgf8 expression.


Asunto(s)
Factor 8 de Crecimiento de Fibroblastos/genética , Oryzias/embriología , Colículos Superiores/embriología , Animales , Femenino , Factor 8 de Crecimiento de Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Masculino , Mutación/genética , Oryzias/genética , Oryzias/metabolismo , Fenotipo , Colículos Superiores/anomalías , Colículos Superiores/metabolismo
2.
Zoolog Sci ; 25(4): 407-18, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18459823

RESUMEN

The cerebellar structures of teleosts are markedly different from those of other vertebrates. The cerebellum continues rostrally into the midbrain ventricle, forming the valvula cerebelli, only in ray-finned fishes among vertebrates. To analyze the ontogenetic processes that underlie this morphological difference, we examined the early development of the cerebellar regions, including the isthmus (mid/hindbrain boundary, MHB), of the medaka (Oryzias latipes), by histology and in-situ hybridization using two gene (wnt1 and fgf8) probes. Isthmic wnt1 was expressed stably in the caudalmost mesencephalic region in the neural tube at all developmental stages examined, defining molecularly the caudal limit of the mesencephalon. The wnt1-positive mesencephalic cells became located rostrally to the isthmic constriction at Iwamatsu's stages 25-26. Isthmic fgf8 expression changed dynamically and became restricted to the rostralmost metencephalic region at stage 24. The rostralmost part (prospective valvula cerebelli) of the fgf8-positive rostral metencephalon protruded rostrally into the midbrain ventricle, bypassing the isthmic constriction, at stages 25-26. Thus, the isthmic constriction shifted caudally with respect to the molecularly defined MHB at stages 25-26. Paired cerebellar primordia were formed from the alar plates of the fgf8-positive rostral metencephalon and the fgf8-negative caudal metencephalon in the medaka neural tube. Our results show that cerebellar development differs between teleosts and murines: both the rostral and caudal metencephalic alar plates develop into the cerebellum in medaka, whereas in the murines only the caudal metencephalic alar plate develops into the cerebellum, and the rostral plate is reduced to a thin membrane.


Asunto(s)
Cerebelo/embriología , Embrión no Mamífero/fisiología , Regulación del Desarrollo de la Expresión Génica , Oryzias/embriología , Animales , Cerebelo/crecimiento & desarrollo , Embrión no Mamífero/embriología , Hibridación in Situ , Mesencéfalo/embriología , Mesencéfalo/crecimiento & desarrollo , Oryzias/crecimiento & desarrollo
3.
Dev Dyn ; 236(8): 2298-310, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17654721

RESUMEN

We have isolated and characterized a ventralized mutant in medaka (the Japanese killifish; Oryzias latipes), which turned out to have a mutation in the chordin gene. The mutant exhibits ventralization of the body axis, malformation of axial bones, over-bifurcation of yolk sac blood vessels, and laterality defects in internal organs. The mutant exhibits variability of phenotypes, depending on the culture temperature, from embryos with a slightly ventralized phenotype to those without any head and trunk structures. Taking advantages of these variable and severe phenotypes, we analyzed the role of Chordin-dependent tissues such as the notochord and Kupffer's vesicle (KV) in the establishment of left-right axis in fish. The results demonstrate that, in the absence of the notochord and KV, the medaka lateral plate mesoderm autonomously and bilaterally expresses spaw gene in a default state.


Asunto(s)
Tipificación del Cuerpo/genética , Glicoproteínas/genética , Péptidos y Proteínas de Señalización Intercelular/genética , Mutación , Oryzias/genética , Animales , Células Cultivadas , Embrión no Mamífero , Notocorda , Oryzias/embriología , Fenotipo , Temperatura
4.
Dev Growth Differ ; 49(5): 395-405, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17547649

RESUMEN

Recent studies have revealed that a cilium-generated liquid flow in the node has a crucial role in the establishment of the left-right (LR) axis in the mouse. In fish, Kupffer's vesicle (KV), a teleost-specific spherical organ attached to the tail region, is known to have an equivalent role to the mouse node during LR axis formation. However, at present, there has been no report of an asymmetric gene expressed in KV under the control of fluid flow. Here we report the earliest asymmetric gene in teleost KV, medaka charon, and its regulation. Charon is a member of the Cerberus/DAN family of proteins, first identified in zebrafish. Although zebrafish charon was reported to be symmetrically expressed in KV, medaka charon displays asymmetric expression with more intense expression on the right side. This asymmetric expression was found to be regulated by KV flow because symmetric and up-regulated charon expression was observed in flow-defective embryos with immotile cilia or disrupted KV. Taken together, medaka charon is a reliable gene marker for LR asymmetry in KV and thus, will be useful for the analysis of the early steps downstream of the fluid flow.


Asunto(s)
Oryzias/embriología , Oryzias/genética , Secuencia de Aminoácidos , Estructuras Animales/embriología , Estructuras Animales/fisiología , Animales , Secuencia de Bases , Líquidos Corporales/fisiología , Tipificación del Cuerpo , Clonación Molecular , ADN Complementario/genética , Proteínas de Peces/genética , Regulación del Desarrollo de la Expresión Génica , Datos de Secuencia Molecular , Mutación , Proteína Nodal , Oligodesoxirribonucleótidos Antisentido/genética , Oryzias/fisiología , Interferencia de ARN , Homología de Secuencia de Aminoácido , Transducción de Señal , Factor de Crecimiento Transformador beta/genética
5.
Brain Behav Evol ; 69(2): 87-95, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17230016

RESUMEN

We propose here a novel interpretation of the embryonic origin of cells of diencephalic sensory relay nuclei in teleosts based on our recent studies of gene expression patterns in the medaka (Oryzias latipes) embryonic brain and comparative hodological studies. It has been proposed that the diencephalic sensory relay system in teleosts is unique among vertebrates. Teleost relay nuclei, the preglomerular complex (PG), have been assumed to originate from the basal plate (the posterior tuberculum) of the diencephalon, whereas relay nuclei in mammals are derived from the alar plate (dorsal thalamus) of the diencephalon. Our results using in situ hybridization show, however, that many pax6- or dlx2-positive cells migrate laterally and ventrocaudally from the diencephalic alar plate to the basal plate during development. Massive clusters of the migrated alar cells become localized in the mantle layer lateral to the posterior tubercular neuroepithelium, from which main nuclei of the PG appear to differentiate. We therefore consider most if not all neurons in the PG to be of alar, not basal, origin. Thus, the teleost PG, at least in part, can be regarded as migrated alar nuclei. Developmental and hodological data strongly suggest that the teleost PG is homologous to a part of the mammalian dorsal thalamus. The organization and origin of the diencephalic sensory relay system might have been conserved across vertebrates.


Asunto(s)
Diencéfalo/embriología , Oryzias/embriología , Animales , Animales Endogámicos , Diencéfalo/metabolismo , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Regulación del Desarrollo de la Expresión Génica , Red Nerviosa , Oryzias/genética
6.
Dev Biol ; 304(1): 326-37, 2007 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-17261279

RESUMEN

Medaka (Oryzias latipes) is a small freshwater teleost that provides an excellent developmental genetic model complementary to zebrafish. Our recent mutagenesis screening using medaka identified headfish (hdf) which is characterized by the absence of trunk and tail structures with nearly normal head including the midbrain-hindbrain boundary (MHB). Positional-candidate cloning revealed that the hdf mutation causes a functionally null form of Fgfr1. The fgfr1hdf is thus the first fgf receptor mutant in fish. Although FGF signaling has been implicated in mesoderm induction, mesoderm is induced normally in the fgfr1hdf mutant, but subsequently, mutant embryos fail to maintain the mesoderm, leading to defects in mesoderm derivatives, especially in trunk and tail. Furthermore, we found that morpholino knockdown of medaka fgf8 resulted in a phenotype identical to the fgfr1hdf mutant, suggesting that like its mouse counterpart, Fgf8 is a major ligand for Fgfr1 in medaka early embryogenesis. Intriguingly, Fgf8 and Fgfr1 in zebrafish are also suggested to form a major ligand-receptor pair, but their function is much diverged, as the zebrafish fgfr1 morphant and zebrafish fgf8 mutant acerebellar (ace) only fail to develop the MHB, but develop nearly unaffected trunk and tail. These results provide evidence that teleost fish have evolved divergent functions of Fgf8-Fgfr1 while maintaining the ligand-receptor relationships. Comparative analysis using different fish is thus invaluable for shedding light on evolutionary diversification of gene function.


Asunto(s)
Tipificación del Cuerpo/genética , Mesodermo/fisiología , Oryzias/genética , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Pez Cebra/genética , Secuencia de Aminoácidos , Animales , Mapeo Cromosómico , Análisis por Conglomerados , Biología Computacional , Cartilla de ADN , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Hibridación in Situ , Microesferas , Datos de Secuencia Molecular , Mutación/genética , Oligonucleótidos , Oryzias/embriología , Filogenia , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Especificidad de la Especie , Pez Cebra/embriología , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
7.
J Comp Neurol ; 476(3): 219-39, 2004 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-15269967

RESUMEN

We examined the morphogenesis and regionalization of the embryonic brain of an acanthopterygian teleost, medaka (Oryzias latipes), by in situ hybridization using 14 gene probes. We compared our results with previous studies in other vertebrates, particularly zebrafish, an ostariophysan teleost. During the early development of the medaka neural rod, three initial brain vesicles arose: the anterior brain vesicle, which later developed into the telencephalon and rostral diencephalon; the intermediate brain vesicle, which later developed into the caudal diencephalon, mesencephalon, and metencephalon; and the posterior brain vesicle, which later developed into the myelencephalon. In the late neural rod, the rostral brain bent ventrally and the axis of the brain had a marked curvature at the diencephalon. In the final stage of the neural rod, ventricles began to develop, transforming the neural rod into the neural tube. In situ hybridization revealed that the brain can be divided into three longitudinal zones (dorsal, intermediate, and ventral) and many transverse subdivisions, on the basis of molecular expression patterns. The telencephalon was subdivided into two transverse domains. Our results support the basic concept of neuromeric models, including the prosomeric model, which suggests the existence of a conserved organization of all vertebrate neural tubes. Our results also show that brain development in medaka differs from that reported in other vertebrates, including zebrafish, in gene-expression patterns in the telencephalon, in brain vesicle formation, and in developmental speed. Developmental and genetic programs for brain development may be somewhat different even among teleosts.


Asunto(s)
Mapeo Encefálico , Encéfalo/embriología , Organogénesis/fisiología , Oryzias/embriología , Animales , Tipificación del Cuerpo/genética , Linaje de la Célula/genética , Linaje de la Célula/fisiología , Movimiento Celular/genética , Movimiento Celular/fisiología , Desarrollo Embrionario , Regulación del Desarrollo de la Expresión Génica , Marcadores Genéticos , Hibridación in Situ , Organogénesis/genética , Oryzias/genética
8.
J Comp Neurol ; 476(3): 240-53, 2004 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-15269968

RESUMEN

In order to know the general pattern of axonogenesis in vertebrates, we examined axonogenesis in the embryonic brain of a teleost fish, medaka (Oryzias latipes), and the results were compared with previous studies in zebrafish and mouse. The axons and somata were stained immunocytochemically using antibodies to a cell surface marker (HNK-1) and acetylated tubulin and visualized by retrograde and anterograde labeling with a lipophilic dye. The fiber systems developed correlating with the organization of the longitudinal and transverse subdivisions of the embryonic brain. The first axons extended from the synencephalic tegmentum, forming the first fiber tract (fasciculus longitudinalis medialis) in the ventral longitudinal zone of the neural rod, 38 hours after fertilization. In the neural tube, throughout the entire brain two pairs of longitudinal fiber systems, one ventral series and one dorsal or intermediate series, and four pairs of transverse fiber tracts in the rostral brain were formed sequentially during the first 16 hours of axon production. In one of the dorsal longitudinal tracts, its branch retracted and disappeared at later stages. One of the transverse tracts was found to course in the telencephalon and hypothalamus. The overall pattern of the longitudinal fiber systems in medaka brain is similar to that in mouse, but apparently different from that in zebrafish. We propose that a ventral tract reported in zebrafish partially belongs to the dorsal fiber system, and that the longitudinal fiber systems in all vertebrate brains pass through a common layout defined by conserved genetic and developmental programs.


Asunto(s)
Axones/fisiología , Encéfalo/embriología , Neuronas/citología , Organogénesis/fisiología , Oryzias/embriología , Animales , Desarrollo Embrionario , Inmunohistoquímica , Morfogénesis , Vías Nerviosas/fisiología , Neuronas/fisiología , Oryzias/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...