Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 4: 6173, 2014 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-25146230

RESUMEN

High-k dielectric oxides are supposedly ideal gate-materials for ultra-high doping in graphene and other 2D-crystals. Here, we report a temperature-dependent electronic transport study on chemical vapor deposited-graphene gated with SrTiO3 (STO) thin film substrate. At carrier densities away from charge neutrality point the temperature-dependent resistivity of our graphene samples on both STO and SiO2/Si substrates show metallic behavior with contributions from Coulomb scattering and flexural phonons attributable to the presence of characteristic quasi-periodic nano-ripple arrays. Significantly, for graphene samples on STO substrates we observe an anomalous 'slope-break' in the temperature-dependent resistivity for T = 50 to 100 K accompanied by a decrease in mobility above 30 K. Furthermore, we observe an unusual decrease in the gate-induced doping-rate at low temperatures, despite an increase in dielectric constant of the substrate. We believe that a complex mechanism is at play as a consequence of the structural phase transition of the underlying substrate showing an anomalous transport behavior in graphene on STO. The anomalies are discussed in the context of Coulomb as well as phonon scattering.

2.
Nanotechnology ; 24(47): 475202, 2013 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-24192319

RESUMEN

We report the fabrication of a flexible graphene-based nonvolatile memory device using Pb(Zr0.35,Ti0.65)O3 (PZT) as the ferroelectric material. The graphene and PZT ferroelectric layers were deposited using chemical vapor deposition and sol­gel methods, respectively. Such PZT films show a high remnant polarization (Pr) of 30 µC cm−2 and a coercive voltage (Vc) of 3.5 V under a voltage loop over ±11 V. The graphene­PZT ferroelectric nonvolatile memory on a plastic substrate displayed an on/off current ratio of 6.7, a memory window of 6 V and reliable operation. In addition, the device showed one order of magnitude lower operation voltage range than organic-based ferroelectric nonvolatile memory after removing the anti-ferroelectric behavior incorporating an electrolyte solution. The devices showed robust operation in bent states of bending radii up to 9 mm and in cycling tests of 200 times. The devices exhibited remarkable mechanical properties and were readily integrated with plastic substrates for the production of flexible circuits.

3.
ACS Nano ; 7(4): 3130-8, 2013 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-23448089

RESUMEN

A flexible, transparent acoustic actuator and nanogenerator based on graphene/P(VDF-TrFE)/graphene multilayer film is demonstrated. P(VDF-TrFE) is used as an effective doping layer for graphene and contributes significantly to decreasing the sheet resistance of graphene to 188 ohm/sq. The potentiality of graphene/P(VDF-TrFE)/graphene multilayer film is realized in fabricating transparent, flexible acoustic devices and nanogenerators to represent its functionality. The acoustic actuator shows good performance and sensitivity over a broad range of frequency. The output voltage and the current density of the nanogenerator are estimated to be ∼3 V and ∼0.37 µAcm(-2), respectively, upon the application of pressure. These values are comparable to those reported earlier for ZnO- and PZT-based nanogenerators. Finally, the possibility of rollable devices based on graphene/P(VDF-TrFE)/graphene structure is also demonstrated under a dynamic mechanical loading condition.


Asunto(s)
Acústica/instrumentación , Grafito/química , Membranas Artificiales , Sistemas Microelectromecánicos/instrumentación , Nanoestructuras/química , Polivinilos/química , Módulo de Elasticidad , Diseño de Equipo , Análisis de Falla de Equipo , Ensayo de Materiales , Nanoestructuras/ultraestructura , Tamaño de la Partícula , Estrés Mecánico
4.
ACS Nano ; 6(5): 3935-42, 2012 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-22524641

RESUMEN

Graphene has exceptional optical, mechanical, and electrical properties, making it an emerging material for novel optoelectronics, photonics, and flexible transparent electrode applications. However, the relatively high sheet resistance of graphene is a major constraint for many of these applications. Here we propose a new approach to achieve low sheet resistance in large-scale CVD monolayer graphene using nonvolatile ferroelectric polymer gating. In this hybrid structure, large-scale graphene is heavily doped up to 3 × 10(13) cm(-2) by nonvolatile ferroelectric dipoles, yielding a low sheet resistance of 120 Ω/□ at ambient conditions. The graphene-ferroelectric transparent conductors (GFeTCs) exhibit more than 95% transmittance from the visible to the near-infrared range owing to the highly transparent nature of the ferroelectric polymer. Together with its excellent mechanical flexibility, chemical inertness, and the simple fabrication process of ferroelectric polymers, the proposed GFeTCs represent a new route toward large-scale graphene-based transparent electrodes and optoelectronics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA