Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Chemother ; : 1-15, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39101797

RESUMEN

Acquired chemoresistance remains a significant challenge in the clinics as most of the treated cancers eventually emerge as hard-to-treat phenotypes. Therefore, identifying chemoresistance targets is highly warranted to manage the disease better. In this study, we employed a label-free LC-MS/MS-based quantitative proteomics analysis to identify potential targets and signaling pathways underlying acquired chemoresistance in a sub-cell line (A549DR) derived from the parental lung adenocarcinoma cells (A549) treated with gradually increasing doses of doxorubicin (DOX). Our proteomics analysis identified 146 upregulated and 129 downregulated targets in A549DR cells. The KEGG pathway and Gene ontology (GO) analysis of differentially expressed upregulated and downregulated proteins showed that most abundant upregulated pathways were related to metabolic pathways, cellular senescence, cell cycle, and p53 signaling. Meanwhile, the downregulated pathways were related to spliceosome, nucleotide metabolism, DNA replication, nucleotide excision repair, and nuclear-cytoplasmic transport. Further, STRING analysis of upregulated biological processes showed a protein-protein interaction (PPI) between CDK1, AKT2, SRC, STAT1, HDAC1, FDXR, FDX1, NPC1, ALDH2, GPx1, CDK4, and B2M, proteins. The identified proteins in this study might be the potential therapeutic targets for mitigating DOX resistance.

2.
Life Sci ; 333: 122164, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37827230

RESUMEN

AIMS: Rifampicin-induced hepatotoxicity is a primary cause of drug-induced liver injury (DILI), posing a significant challenge to its continued clinical application. Moreover, the mechanism underlying rifampicin-induced hepatotoxicity remains unclear. MAIN METHODS: Human hepatocyte line-17 (HHL-17) cells were treated with an increasing dose of rifampicin for 24 h, and male Wistar rats were given rifampicin [150 mg/kg body weight (bw)] orally for 28 days. Viability assay, protein expression, and cell death assays were analyzed in vitro. Moreover, liver serum markers, body/organ weight, H&E staining, protein expression, etc., were assayed in vivo. KEY FINDINGS: Rifampicin induced a dose-dependent hepatotoxicity in HHL-17 cells (IC50; 600 µM), and increased the serum levels of liver injury markers, e.g., alanine transaminase (ALT) and aspartate transaminase (AST) in rats. Rifampicin-induced cell death was non-apoptotic and non-necroptotic both in vitro and in vivo. Further, excessive cellular vacuolization and reduced expression of Alix protein confirmed the induction of paraptosis both in vitro and in vivo. In addition, a significant increase in the endoplasmic reticulum (ER) stress markers (e.g., BiP, CHOP, and total polyubiquitinated proteins) was detected, demonstrating the induction of ER stress and altered protein homeostasis. Interestingly, rifampicin-induced hepatotoxicity was associated with the inhibition of autophagy and enhanced reactive oxygen species (ROS) generation in HHL-17 cells. Furthermore, inhibition of protein synthesis by cycloheximide (CHX) suppressed paraptosis by alleviating rifampicin-induced ER stress and ROS generation. SIGNIFICANCE: Rifampicin-induced hepatotoxicity involves ER stress-driven paraptosis as a novel mechanism of its toxicity that may be targeted to protect liver cells from rifampicin toxicity.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Rifampin , Masculino , Humanos , Ratas , Animales , Rifampin/toxicidad , Especies Reactivas de Oxígeno/metabolismo , Ratas Wistar , Apoptosis , Estrés del Retículo Endoplásmico , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología
3.
Vitam Horm ; 122: 253-282, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36863797

RESUMEN

Prostate cancer (PCa) is one of the major health burdens among all cancer types in men globally. Early diagnosis and efficacious treatment options are highly warranted as far as the incidence of PCa is concerned. Androgen-dependent transcriptional activation of androgen receptor (AR) is central to the prostate tumorigenesis and therefore hormonal ablation therapy remains the first line of treatment for PCa in the clinics. However, the molecular signaling engaged in AR-dependent PCa initiation and progression is infrequent and diverse. Moreover, apart from the genomic changes, non-genomic changes such as epigenetic modifications have also been suggested as critical regulator of PCa development. Among the non-genomic mechanisms, various epigenetic changes such as histones modifications, chromatin methylation and noncoding RNAs regulations etc. play decisive role in the prostate tumorigenesis. Given that epigenetic modifications are reversible using pharmacological modifiers, various promising therapeutic approaches have been designed for the better management of PCa. In this chapter, we discuss the epigenetic control of tumor promoting AR signaling that underlies the mechanism of prostate tumorigenesis and progression. In addition, we have discussed the approaches and opportunities to develop novel epigenetic modifications based therapeutic strategies for targeting PCa including castrate resistant prostate cancer (CRPC).


Asunto(s)
Andrógenos , Neoplasias de la Próstata , Masculino , Humanos , Neoplasias de la Próstata/genética , Transducción de Señal , Carcinogénesis , Epigénesis Genética
4.
Biochem Biophys Res Commun ; 656: 131-138, 2023 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-36963349

RESUMEN

Drug repurposing holds abundant opportunity in the development of novel anticancer drugs. Chloroquine (CQ), a FDA approved anti-malarial drug, is demonstrated to enhance anticancer efficacy of standard anticancer drugs including doxorubicin (DOX) in several types of cancer cells. Here, we aimed to exploit the chemosensitizing effects of CQ against DOX in human cervical cancer (HeLa) cells that remains to be investigated yet. We show that a combination of DOX (40 nM) and CQ (40 µM) resulted in a synergistic cytotoxicity (combination index; CI < 1) in HeLa cells compared to the DOX or CQ alone. Synergistic effect of the combination (DOX + CQ) was associated with the impaired autophagic flux and enhanced apoptosis. Following treatment with the combination (DOX + CQ), the level of p62/SQSTM and LC-3II proteins was increased, while a decrease was noted in the expression of LAMP-2, Syntaxin17, Rab 5, and Rab 7 proteins that play critical roles in the fusion of autophagosomes to lysosomes. Autophagy inhibition by combination (DOX + CQ) enhanced the apoptotic cell death synergistically by increasing the cleavage of procaspase-3 and PARP1. Further, a prior incubation of HeLa cells with Z-VAD-FMK (a pan-caspase inhibitor) for 4 h, suppressed the combination (DOX + CQ)-induced cell death. Our data suggest that a combination of DOX + CQ had a better anti-cancer efficacy in HeLa cells than either of the drugs alone. Thus, CQ, as a repurposed drug, may hold the potential to synergize anticancer effects of DOX in cervical cancer cells.


Asunto(s)
Antineoplásicos , Neoplasias del Cuello Uterino , Femenino , Humanos , Cloroquina/farmacología , Autofagosomas , Neoplasias del Cuello Uterino/tratamiento farmacológico , Regulación hacia Abajo , Células HeLa , Línea Celular Tumoral , Doxorrubicina/farmacología , Antineoplásicos/farmacología , Lisosomas , Apoptosis , Autofagia
5.
Life Sci ; 302: 120649, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35597549

RESUMEN

AIMS: The frequency of estrogen receptor alpha (ERα)-positive breast cancers and their metastatic progression is prevalent in females globally. Aberrant interaction of estrogen-like endocrine-disrupting chemicals (EDCs) is highly implicated in breast carcinogenesis. Studies have shown that single or acute exposures of weak EDCs such as bisphenol A (BPA) may not have a substantial pro-carcinogenic/metastatic effect. However, repeated exposure to EDCs is expected to strongly induce carcinogenic/metastatic progression, which remains to be studied. MAIN METHODS: Low metastatic ERα-positive human breast cancer cells (MCF-7) were exposed to nanomolar doses of BPA every 24 h (up to 200 days) to study the effect of repeated exposure on metastatic potential. Following the designated treatment of BPA, markers of epithelial-mesenchymal transition (EMT), migration and invasion, mitochondrial biogenesis, ATP levels, and peroxisome proliferator-activated receptor-gamma coactivator 1-alpha (PGC-1α) knockdown assays were performed. KEY FINDINGS: A repeated exposure of low dose BPA induced stable epithelial-mesenchymal plasticity in MCF-7 cells to augment migration and invasion in the ERα-dependent pathway. Repeated exposures of BPA increased the levels of several mesenchymal markers such as N-cadherin, vimentin, cluster of differentiation 44 (CD44), slug, and alpha-smooth muscle actin (α-SMA), whereas reduced the level of E-cadherin drastically. BPA-induced mitochondrial biogenesis favored metastatic aggression by fulfilling bioenergetics demand via PGC-1α/NRF1/ERRα signaling. Knockdown of PGC-1α resulted in suppressing both mitochondrial biogenesis and EMT in BPA exposed MCF-7 cells. SIGNIFICANCE: Repeated exposures of low dose BPA may induce metastatic aggression in ERα-positive breast cancer cells via PGC-1α-mediated mitochondrial biogenesis and epithelial-mesenchymal plasticity.


Asunto(s)
Neoplasias de la Mama , Receptor alfa de Estrógeno , Femenino , Humanos , Células MCF-7 , Receptor alfa de Estrógeno/genética , Biogénesis de Organelos , Neoplasias de la Mama/inducido químicamente , Neoplasias de la Mama/tratamiento farmacológico , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...