Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Rev Sci Instrum ; 92(2): 023514, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33648071

RESUMEN

This paper describes design, development, and implementation of a multi-channel magnetic electron spectrometer for the application in laser-plasma interaction experiments carried out at the Prague Asterix Laser System. Modular design of the spectrometer allows the setup in variable configurations to evaluate the angular distribution of hot electron emission. The angular array configuration of the electron spectrometers consists of 16 channels mounted around the target. The modules incorporate a plastic electron collimator designed to suppress the secondary radiation by absorbing the wide angle scattered electrons and photons inside the collimator. The compact model of the spectrometer measures electron energies in the range from 50 keV to 1.5MeV using ferrite magnets and from 250 keV to 5MeV using stronger neodymium magnets. An extended model of the spectrometer increases the measured energy range up to 21MeV or 35MeV using ferrite or neodymium magnets, respectively. Position to energy calibration was obtained using the particle tracking simulations. The experimental results show the measured angularly resolved electron energy distribution functions from interaction with solid targets. The angular distribution of hot electron temperature, the total flux, and the maximum electron energy show a directional dependence. The measured values of these quantities increase toward the target normal. For a copper target, the average amount of measured electron flux is 1.36 × 1011, which corresponds to the total charge of about 21 nC.

2.
Opt Express ; 26(12): 14999-15008, 2018 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-30114753

RESUMEN

Dynamics of laser-induced optical breakdown in the bulk of fused-silica glass irradiated by a sub-nanosecond laser pulse at a wavelength of 790 nm with a fluence of 522 J/cm2 was studied by the femtosecond time-resolved complex interferometry in Nomarski arrangement utilising a Fresnel bi-prism. Evolution of the plasma channel and the development of the free electron density were in focus of the investigation. The measured ultimate length of the plasma channel was equal to 30 µm and almost doubled the length estimated within the moving breakdown model. The history of the transient electron density distribution in the plasma was reconstructed from the phase shift maps using the inverse Abel transform and it revealed further deviation from this model. The core of the plasma channel exhibited at the last stages of the development a considerable level of the electron density up to 2.4×1020 cm-3. The signature of the pre-breakdown phase has been identified as radiation caused by ionization-released electrons interacting with ions and has been demonstrated in solids for the first time in this way. Origin of the discrepancy between the theoretical prediction of the moving breakdown model and the measured values of the channel length is discussed as well.

3.
Opt Lett ; 35(22): 3820-2, 2010 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-21082008

RESUMEN

We demonstrate that interferometric probing with extreme ultraviolet (EUV) laser light enables determination of the degree of ionization of the "warm dense matter" produced between the critical and ablation surfaces of laser plasmas. Interferometry has been utilized to measure both transmission and phase information for an EUV laser beam at the photon energy of 58.5 eV, probing longitudinally through laser-irradiated plastic (parylene-N) targets (thickness 350 nm) irradiated by a 300 ps duration pulse of wavelength 438 nm and peak irradiance 10(12) W cm(-2). The transmission of the EUV probe beam provides a measure of the rate of target ablation, as ablated plasma becomes close to transparent when the photon energy is less than the ionization energy of the predominant ion species. We show that refractive indices η below the solid parylene N (η(solid) = 0.946) and expected plasma values are produced in the warm dense plasma created by laser irradiation due to bound-free absorption in C(+).

4.
Appl Opt ; 27(10): 1956-9, 1988 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-20531689

RESUMEN

A fast Fourier transform based Abel inversion technique is proposed. The method is faster than previously used techniques, potentially very accurate (even for a relatively small number of points), and capable of handling large data sets. The technique is discussed in the context of its use with 2-D digital interferogram analysis algorithms. Several examples are given.

5.
Appl Opt ; 26(9): 1674-9, 1987 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-20454387

RESUMEN

An interferometric technique which enables simultaneous phase and amplitude imaging of optically transparent objects is discussed with respect to its application for the measurement of spontaneous toroidal magnetic fields generated in laser-produced plasmas. It is shown that this technique can replace the normal independent pair of optical systems (interferometry and shadowgraphy) by one system and use computer image processing to recover both the plasma density and magnetic field information with high accuracy. A fully automatic algorithm for the numerical analysis of the data has been developed and its performance demonstrated for the case of simulated as well as experimental data.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...