Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Parasit Vectors ; 17(1): 157, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38539265

RESUMEN

BACKGROUND: Lyme borreliosis is the most common tick-borne disease in Europe and is often caused by Borrelia afzelii, which is transmitted by Ixodes ricinus ticks. The prevalence and abundance of infected ticks fluctuate in time and space, influencing human infection risk. Rodents are reservoir hosts for B. afzelii and important feeding hosts for larval ticks. In the study reported here, we examined how variation in rodent abundance is associated with B. afzelii infection prevalence in ticks, the density of nymphs (DON) and the density of infected nymphs (DIN) in the following year. We further analysed the relationships between the abundance of infected rodents and nymphal infection prevalence (NIP) and DIN. METHODS: We conducted a study that combined experimental and observational approaches on 15 islands (10 small islands and 5 large islands) in Finland. On all of the islands, ticks and rodents were monitored and sampled during the summer of 2019, with the monitoring of tick abundance and sampling continuing into the spring of 2020. On five of the 10 small islands, captured rodents were removed from the island ("removal" islands), and on the other five small islands, captured rodents were released back to the trapping site after marking and sampling ("control" islands). On the five large islands, captured rodents were released back to the trapping site after marking and sampling. The presence of B. afzelii from nymph and rodent samples was examined. RESULTS: The results of the experimental study showed that neither treatment (removal), rodent abundance index nor abundance index of infected rodents in 2019 was associated with DON, NIP or DIN in 2020. Based on data from the observational study, the NIP in 2020 decreased with increasing rodent abundance index and abundance index of infected rodents in 2019. However, the DIN in 2020 was not associated with the rodent abundance index or the abundance index of infected rodents in 2019. In addition, in the observational study, DON in 2020 increased with increasing rodent abundance index. CONCLUSIONS: Our results suggest that low rodent abundance during the tick activity period is not sufficient for reducing the disease hazard and, hence, rodent removal may not be a feasible control measure in natural ecosystems.


Asunto(s)
Grupo Borrelia Burgdorferi , Borrelia , Ixodes , Enfermedad de Lyme , Animales , Humanos , Roedores , Ecosistema , Enfermedad de Lyme/epidemiología , Ninfa
2.
Proc Biol Sci ; 291(2016): 20232531, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38320610

RESUMEN

The response of the gut microbiota to changes in the host environment can be influenced by both the host's past and present habitats. To quantify their contributions for two different life stages, we studied the gut microbiota of wild bank voles (Clethrionomys glareolus) by performing a reciprocal transfer experiment with adults and their newborn offspring between urban and rural forests in a boreal ecosystem. Here, we show that the post-transfer gut microbiota in adults did not shift to resemble the post-transfer gut microbiota of animals 'native' to the present habitat. Instead, their gut microbiota appear to be structured by both their past and present habitat, with some features of the adult gut microbiota still determined by the past living environment (e.g. alpha diversity, compositional turnover). By contrast, we did not find evidence of the maternal past habitat (maternal effects) affecting the post-transfer gut microbiota of the juvenile offspring, and only a weak effect of the present habitat. Our results show that both the contemporary living environment and the past environment of the host organism can structure the gut microbiota communities, especially in adult individuals. These data are relevant for decision-making in the field of conservation and wildlife translocations.


Asunto(s)
Ecosistema , Microbioma Gastrointestinal , Animales , Roedores , Animales Salvajes , Bosques , Arvicolinae
3.
Ticks Tick Borne Dis ; 15(1): 102252, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37741086

RESUMEN

Ticks are important vectors of zoonotic pathogens. Ticks are parasites that are dependent on their hosts for blood meal to develop and reproduce. The abundance of ticks is dependent on the availability of suitable breeding hosts, often medium- and large-sized mammals. So far there has been a shortage of direct methods identifying the breeding hosts for the female ticks. In this study, we introduce a stable isotope analysis (SIA) method that enables us to identify the trophic group of the breeding host, i.e. the host on which the tick mother fed, by sampling larval ticks from the field. We established a reference database on the stable isotope (SI) values (δ13C and δ15N) of the blood of potential tick host species, and of larvae from Ixodes ricinus females, which have fed on known hosts. By comparing the SI values from field collected larval ticks to our reference data, we can determine their most likely host species group. Our results show that the isotopic signatures of I. ricinus tick larvae reflect the diet of the breeding host of the mother tick. SIA proved reliable in categorizing the breeding hosts of I. ricinus into two distinguishable trophic groups; herbivores and carni-omnivores. To our knowledge, this is the first time that stable isotope analyses have been applied to detect transovarial (i.e. over-generational) traces of a blood meal in ticks. The method provides an efficient, novel tool for directly identifying tick breeding hosts by sampling field collected larvae. Ixodes ricinus is the most important vector of TBPs (tick-borne pathogens) in Europe, and to predict and mitigate against the future risks that TBPs pose, it is crucial to have detailed knowledge on the hosts that support tick reproduction in nature.


Asunto(s)
Ixodes , Infestaciones por Garrapatas , Femenino , Animales , Larva , Infestaciones por Garrapatas/veterinaria , Infestaciones por Garrapatas/parasitología , Mamíferos , Isótopos
4.
Proc Biol Sci ; 290(1996): 20222470, 2023 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-37040809

RESUMEN

Identifying factors that drive infection dynamics in reservoir host populations is essential in understanding human risk from wildlife-originated zoonoses. We studied zoonotic Puumala orthohantavirus (PUUV) in the host, the bank vole (Myodes glareolus), populations in relation to the host population, rodent and predator community and environment-related factors and whether these processes are translated into human infection incidence. We used 5-year rodent trapping and bank vole PUUV serology data collected from 30 sites located in 24 municipalities in Finland. We found that PUUV seroprevalence in the host was negatively associated with the abundance of red foxes, but this process did not translate into human disease incidence, which showed no association with PUUV seroprevalence. The abundance of weasels, the proportion of juvenile bank voles in the host populations and rodent species diversity were negatively associated with the abundance index of PUUV positive bank voles, which, in turn, showed a positive association with human disease incidence. Our results suggest certain predators, a high proportion of young bank vole individuals, and a diverse rodent community, may reduce PUUV risk for humans through their negative impacts on the abundance of infected bank voles.


Asunto(s)
Infecciones por Hantavirus , Fiebre Hemorrágica con Síndrome Renal , Animales , Humanos , Fiebre Hemorrágica con Síndrome Renal/epidemiología , Animales Salvajes , Estudios Seroepidemiológicos , Arvicolinae
5.
J Anim Ecol ; 92(4): 826-837, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36504351

RESUMEN

The effects of systemic pathogens on gut microbiota of wild animals are poorly understood. Furthermore, coinfections are the norm in nature, yet most studies of pathogen-microbiota interactions focus on effects of single pathogen infections on gut microbiota. We examined the effects of four systemic pathogens (bacteria Anaplasma phagocytophilum and Borrelia burgdorferi sensu lato, apicomplexan protozoa Babesia microti and Puumala orthohantavirus) and coinfections among them on the (bacterial) gut microbiota of wild bank voles Myodes glareolus. We hypothesized that: (1) the effects of coinfection on gut microbiota generally differ from those of a single pathogen infection, (2) systemic pathogens have individual (i.e. distinct) associations with gut microbiota, which are modified by coinfection and (3) the effects of coinfection (compared with those of single infection) are idiosyncratic (i.e. pathogen-specific). The gut microbiota of coinfected bank voles differed from that of single pathogen infected individuals, although, as predicted, the effects of coinfections were unique for each pathogen. After accounting for coinfections, only Puumala orthohantavirus was associated with higher α-diversity; however, all pathogens affected gut microbiota ß-diversity in a pathogen-specific way, affecting both rare and abundant gut bacteria. Our results showed that the effects of systemic pathogens on host's gut microbiota vary depending on the pathogen species, resulting in idiosyncratic signatures of coinfection. Furthermore, our results emphasize that neglecting the impact of coinfections can mask patterns of pathogen-microbiota associations.


Asunto(s)
Borrelia burgdorferi , Coinfección , Microbioma Gastrointestinal , Ixodes , Enfermedades de los Roedores , Animales , Coinfección/veterinaria , Roedores , Arvicolinae/microbiología , Arvicolinae/parasitología , Ixodes/microbiología , Enfermedades de los Roedores/microbiología
6.
Mol Ecol ; 32(2): 504-517, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36318600

RESUMEN

Anthropogenic changes to land use drive concomitant changes in biodiversity, including that of the soil microbiota. However, it is not clear how increasing intensity of human disturbance is reflected in the soil microbial communities. To address this issue, we used amplicon sequencing to quantify the microbiota (bacteria and fungi) in the soil of forests (n = 312) experiencing four different land uses, national parks (set aside for nature conservation), managed (for forestry purposes), suburban (on the border of an urban area) and urban (fully within a town or city), which broadly represent a gradient of anthropogenic disturbance. Alpha diversity of bacteria and fungi increased with increasing levels of anthropogenic disturbance, and was thus highest in urban forest soils and lowest in the national parks. The forest soil microbial communities were structured according to the level of anthropogenic disturbance, with a clear urban signature evident in both bacteria and fungi. Despite notable differences in community composition, there was little change in the predicted functional traits of urban bacteria. By contrast, urban soils exhibited a marked loss of ectomycorrhizal fungi. Soil pH was positively correlated with the level of disturbance, and thus was the strongest predictor of variation in alpha and beta diversity of forest soil communities, indicating a role of soil alkalinity in structuring urban soil microbial communities. Hence, our study shows how the properties of urban forest soils promote an increase in microbial diversity and a change in forest soil microbiota composition.


Asunto(s)
Micorrizas , Suelo , Humanos , Suelo/química , Bosques , Hongos/genética , Bacterias/genética , Biodiversidad , Microbiología del Suelo
7.
Oecologia ; 200(3-4): 471-478, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36242620

RESUMEN

In seasonal environments, appropriate adaptations are crucial for organisms to maximize their fitness. For instance, in many species, the immune function has been noticed to decrease during winter, which is assumed to be an adaptation to the season's limited food availability. Consequences of an infection on the health and survival of the host organism could thus be more severe in winter than in summer. Here, we experimentally investigated the effect of a zoonotic, endemic pathogen, Borrelia afzelii infection on the survival and body condition in its host, the bank vole (Myodes glareolus), during late autumn-early winter under semi-natural field conditions in 11 large outdoor enclosures. To test the interaction of Borrelia infection and energetic condition, four populations received supplementary nutrition, while remaining seven populations exploited only natural food sources. Supplementary food during winter increased the body mass independent of the infection status, however, Borrelia afzelii infection did not cause severe increase in the host mortality or affect the host body condition in the late autumn-early winter. While our study suggests that no severe effects are caused by B. afzelii infection on bank vole, further studies are warranted to identify any potentially smaller effects the pathogen may cause on the host fitness over the period of whole winter.


Asunto(s)
Infecciones por Borrelia , Grupo Borrelia Burgdorferi , Ixodes , Enfermedad de Lyme , Animales , Enfermedad de Lyme/veterinaria , Enfermedad de Lyme/epidemiología , Estaciones del Año , Roedores , Arvicolinae
8.
Parasit Vectors ; 15(1): 310, 2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-36042518

RESUMEN

BACKGROUND: Ticks are responsible for transmitting several notable pathogens worldwide. Finland lies in a zone where two human-biting tick species co-occur: Ixodes ricinus and Ixodes persulcatus. Tick densities have increased in boreal regions worldwide during past decades, and tick-borne pathogens have been identified as one of the major threats to public health in the face of climate change. METHODS: We used species distribution modelling techniques to predict the distributions of I. ricinus and I. persulcatus, using aggregated historical data from 2014 to 2020 and new tick occurrence data from 2021. By aiming to fill the gaps in tick occurrence data, we created a new sampling strategy across Finland. We also screened for tick-borne encephalitis virus (TBEV) and Borrelia from the newly collected ticks. Climate, land use and vegetation data, and population densities of the tick hosts were used in various combinations on four data sets to estimate tick species' distributions across mainland Finland with a 1-km resolution. RESULTS: In the 2021 survey, 89 new locations were sampled of which 25 new presences and 63 absences were found for I. ricinus and one new presence and 88 absences for I. persulcatus. A total of 502 ticks were collected and analysed; no ticks were positive for TBEV, while 56 (47%) of the 120 pools, including adult, nymph, and larva pools, were positive for Borrelia (minimum infection rate 11.2%, respectively). Our prediction results demonstrate that two combined predictor data sets based on ensemble mean models yielded the highest predictive accuracy for both I. ricinus (AUC = 0.91, 0.94) and I. persulcatus (AUC = 0.93, 0.96). The suitable habitats for I. ricinus were determined by higher relative humidity, air temperature, precipitation sum, and middle-infrared reflectance levels and higher densities of white-tailed deer, European hare, and red fox. For I. persulcatus, locations with greater precipitation and air temperature and higher white-tailed deer, roe deer, and mountain hare densities were associated with higher occurrence probabilities. Suitable habitats for I. ricinus ranged from southern Finland up to Central Ostrobothnia and North Karelia, excluding areas in Ostrobothnia and Pirkanmaa. For I. persulcatus, suitable areas were located along the western coast from Ostrobothnia to southern Lapland, in North Karelia, North Savo, Kainuu, and areas in Pirkanmaa and Päijät-Häme. CONCLUSIONS: This is the first study conducted in Finland that estimates potential tick species distributions using environmental and host data. Our results can be utilized in vector control strategies, as supporting material in recommendations issued by public health authorities, and as predictor data for modelling the risk for tick-borne diseases.


Asunto(s)
Borrelia , Ciervos , Virus de la Encefalitis Transmitidos por Garrapatas , Liebres , Ixodes , Animales , Borrelia/genética , Ecosistema , Finlandia/epidemiología , Humanos
9.
Sci Total Environ ; 790: 148224, 2021 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-34380250

RESUMEN

Mining and related industries are a major source of metal pollution. In contrast to the well-studied effects of exposure to metals on animal physiology and health, the impacts of environmental metal pollution on the gut microbiota of wild animals are virtually unknown. As the gut microbiota is a key component of host health, it is important to understand whether metal pollution can alter wild animal gut microbiota composition. Using a combination of 16S rRNA amplicon sequencing and quantification of metal levels in kidneys, we assessed whether multi-metal exposure (the sum of normalized levels of fifteen metals) was associated with changes in gut microbiota of wild bank voles (Myodes glareolus) from two locations in Finland. Exposure to increased metal load was associated with higher gut microbiota species diversity (α-diversity) and altered community composition (ß-diversity), but not dispersion. Multi-metal exposure and increased levels of several metals (Cd, Hg, Pb and Se) were associated with differences in the abundance of microbial taxa, especially those within the families Clostridiales vadinBB60 group, Desulfovibrionaceae, Lachnospiraceae, Muribaculaceae and Ruminococcaceae. Our data indicate that even low-level metal pollution can affect the diversity of microbiota and be associated with deterministic differences in composition of host gut microbiota in wild animal populations. These findings highlight the need to study a broader range of metals and their cocktails that are more representative of the types of environmental exposure experienced by wild animals.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Animales , Arvicolinae , ARN Ribosómico 16S/genética , Roedores
10.
Sci Rep ; 11(1): 16128, 2021 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-34373474

RESUMEN

Zoonotic diseases, caused by pathogens transmitted between other vertebrate animals and humans, pose a major risk to human health. Rodents are important reservoir hosts for many zoonotic pathogens, and rodent population dynamics affect the infection dynamics of rodent-borne diseases, such as diseases caused by hantaviruses. However, the role of rodent population dynamics in determining the infection dynamics of rodent-associated tick-borne diseases, such as Lyme borreliosis (LB), caused by Borrelia burgdorferi sensu lato bacteria, have gained limited attention in Northern Europe, despite the multiannual abundance fluctuations, the so-called vole cycles, that characterise rodent population dynamics in the region. Here, we quantify the associations between rodent abundance and LB human cases and Puumala Orthohantavirus (PUUV) infections by using two time series (25-year and 9-year) in Finland. Both bank vole (Myodes glareolus) abundance as well as LB and PUUV infection incidence in humans showed approximately 3-year cycles. Without vector transmitted PUUV infections followed the bank vole host abundance fluctuations with two-month time lag, whereas tick-transmitted LB was associated with bank vole abundance ca. 12 and 24 months earlier. However, the strength of association between LB incidence and bank vole abundance ca. 12 months before varied over the study years. This study highlights that the human risk to acquire rodent-borne pathogens, as well as rodent-associated tick-borne pathogens is associated with the vole cycles in Northern Fennoscandia, yet with complex time lags.


Asunto(s)
Arvicolinae/microbiología , Arvicolinae/virología , Fiebre Hemorrágica con Síndrome Renal/transmisión , Enfermedad de Lyme/epidemiología , Virus Puumala , Zoonosis/transmisión , Animales , Vectores Arácnidos/microbiología , Reservorios de Enfermedades/microbiología , Reservorios de Enfermedades/virología , Finlandia/epidemiología , Fiebre Hemorrágica con Síndrome Renal/epidemiología , Interacciones Microbiota-Huesped , Humanos , Incidencia , Ixodes/microbiología , Modelos Lineales , Enfermedad de Lyme/transmisión , Modelos Biológicos , Dinámica Poblacional , Zoonosis/epidemiología
11.
Parasit Vectors ; 13(1): 384, 2020 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-32727555

RESUMEN

BACKGROUND: Because ixodid ticks are vectors of zoonotic pathogens, including Borrelia, information of their abundance, seasonal variation in questing behaviour and pathogen prevalence is important for human health. As ticks are invading new areas northwards, information from these new areas are needed. Taiga tick (Ixodes persulcatus) populations have been recently found at Bothnian Bay, Finland. We assessed seasonal variation in questing abundance of ticks and their pathogen prevalence in coastal deciduous forests near the city of Oulu (latitudes 64-65°) in 2019. METHODS: We sampled ticks from May until September by cloth dragging 100 meters once a month at eight study sites. We calculated a density index (individuals/100 m2) to assess seasonal variation. Samples were screened for Borrelia burgdorferi (sensu lato) (including B. afzelii, B. garinii, B. burgdorferi (sensu stricto) and B. valaisana), Borrelia miyamotoi, Anaplasma phagocytophilum, Rickettsia spp., Neoehrlichia mikurensis, Francisella tularensis and Bartonella spp., Babesia spp. and for the tick-borne encephalitis virus. RESULTS: All except one nymph were identified as I. persulcatus. The number of questing adults showed a strong peak in May (median: 6.5 adults/100 m2), which is among the highest values reported in northern Europe, and potentially indicates a large population size. After May, the number of questing adults declined steadily with few adults still sampled in August. Nymphs were present from May until September. We found a striking prevalence of Borrelia spp. in adults (62%) and nymphs (40%), with B. garinii (51%) and B. afzelii (63%) being the most common species. In addition, we found that 26% of infected adults were coinfected with at least two Borrelia genospecies, mainly B. garinii and B. afzelii, which are associated with different host species. CONCLUSIONS: The coastal forest environments at Bothnian Bay seem to provide favourable environments for I. persulcatus and the spread of Borrelia. High tick abundance, a low diversity of the host community and similar host use among larvae and nymphs likely explain the high Borrelia prevalence and coinfection rate. Research on the infestation of the hosts that quantifies the temporal dynamics of immature life stages would reveal important aspects of pathogen circulation in these tick populations.


Asunto(s)
Borrelia , Virus de la Encefalitis Transmitidos por Garrapatas/aislamiento & purificación , Ixodes/microbiología , Infestaciones por Garrapatas/epidemiología , Animales , Borrelia/clasificación , Borrelia/aislamiento & purificación , Encefalitis Transmitida por Garrapatas/transmisión , Finlandia/epidemiología , Humanos , Larva/microbiología , Enfermedad de Lyme/transmisión , Prevalencia , Estaciones del Año
12.
Sci Rep ; 8(1): 16660, 2018 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-30413762

RESUMEN

The generalist tick Ixodes ricinus is the most important vector for tick-borne pathogens (TBP), including Borrelia burgdorferi sensu lato, in Europe. However, the involvement of other sympatric Ixodes ticks, such as the specialist vole tick I. trianguliceps, in the enzootic circulations of TBP remains unclear. We studied the distribution of I. ricinus and I. trianguliceps in Central Finland and estimated the TBP infection likelihood in the most common rodent host in relation with the abundance of the two tick species. Ixodes trianguliceps was encountered in all 16 study sites whereas I. ricinus was frequently observed only at a quarter of the study sites. The abundance of I. ricinus was positively associated with open water coverage and human population density around the study sites. Borrelia burgdorferi s. l.-infected rodents were found only in sites where I. ricinus was abundant, whereas the occurrence of other TBP was independent of I. ricinus presence. These results suggest that I. trianguliceps is not sufficient, at least alone, in maintaining the circulation of B. burgdorferi s. l. in wild hosts. In addition, anthropogenic factors might affect the distribution of I. ricinus ticks and, hence, their pathogens, thus shaping the landscape of tick-borne disease risk for humans.


Asunto(s)
Arvicolinae/parasitología , Vectores de Enfermedades , Ixodes/patogenicidad , Simpatría , Enfermedades por Picaduras de Garrapatas/veterinaria , Animales , Finlandia/epidemiología , Humanos , Enfermedades por Picaduras de Garrapatas/epidemiología , Enfermedades por Picaduras de Garrapatas/transmisión
13.
Proc Biol Sci ; 285(1884)2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-30068677

RESUMEN

The impact of a pathogen on the fitness and behaviour of its natural host depends upon the host-parasite relationship in a given set of environmental conditions. Here, we experimentally investigated the effects of Borrelia afzelii, one of the aetiological agents of Lyme disease in humans, on the fitness of its natural rodent host, the bank vole (Myodes glareolus), in semi-natural conditions with two contrasting host population densities. Our results show that B. afzelii can modify the reproductive success and spacing behaviour of its rodent host, whereas host survival was not affected. Infection impaired the breeding probability of large bank voles. Reproduction was hastened in infected females without alteration of the offspring size at birth. At low density, infected males produced fewer offspring, fertilized fewer females and had lower mobility than uninfected individuals. Meanwhile, the infection did not affect the proportion of offspring produced or the proportion of mating partner in female bank voles. Our study is the first to show that B. afzelii infection alters the reproductive success of the natural host. The effects observed could reflect the sickness behaviour due to the infection or they could be a consequence of a manipulation of the host behaviour by the bacteria.


Asunto(s)
Arvicolinae/microbiología , Grupo Borrelia Burgdorferi/fisiología , Reproducción/fisiología , Enfermedades de los Roedores/microbiología , Animales , Arvicolinae/fisiología , Grupo Borrelia Burgdorferi/patogenicidad , Femenino , Interacciones Huésped-Patógeno/fisiología , Enfermedad de Lyme/microbiología , Masculino , Densidad de Población , Conducta Sexual Animal/fisiología
14.
Proc Biol Sci ; 284(1869)2017 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-29237850

RESUMEN

The loci arginine vasopressin receptor 1a (avpr1a) and oxytocin receptor (oxtr) have evolutionarily conserved roles in vertebrate social and sexual behaviour. Allelic variation at a microsatellite locus in the 5' regulatory region of these genes is associated with fitness in the bank vole Myodes glareolus Given the low frequency of long and short alleles at these microsatellite loci in wild bank voles, we used breeding trials to determine whether selection acts against long and short alleles. Female bank voles with intermediate length avpr1a alleles had the highest probability of breeding, while male voles whose avpr1a alleles were very different in length had reduced probability of breeding. Moreover, there was a significant interaction between male and female oxtr genotypes, where potential breeding pairs with dissimilar length alleles had reduced probability of breeding. These data show how genetic variation at microsatellite loci associated with avpr1a and oxtr is associated with fitness, and highlight complex patterns of selection at these loci. More widely, these data show how stabilizing selection might act on allele length frequency distributions at gene-associated microsatellite loci.


Asunto(s)
Arvicolinae/genética , Frecuencia de los Genes , Repeticiones de Microsatélite/genética , Receptores de Oxitocina/genética , Receptores de Vasopresinas/genética , Selección Genética , Alelos , Animales , Arvicolinae/metabolismo , Femenino , Variación Genética , Masculino , Receptores de Oxitocina/metabolismo , Receptores de Vasopresinas/metabolismo
15.
Parasit Vectors ; 10(1): 166, 2017 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-28359294

RESUMEN

BACKGROUND: Tick-borne pathogens pose an increasing threat to human and veterinary health across the northern hemisphere. While the seasonal activity of ticks is largely determined by climatic conditions, host-population dynamics are also likely to affect tick abundance. Consequently, abundance fluctuations of rodents in northern Europe are expected to be translated into tick dynamics, and can hence potentially affect the circulation of tick-borne pathogens. We quantified and explained the temporal dynamics of the tick Ixodes ricinus in the northernmost part of its European geographical range, by estimating (i) abundance in vegetation and (ii) infestation load in the most common rodent species in the study area, the bank vole Myodes glareolus. RESULTS: Ixodes ricinus nymphs and adult females, the life stages responsible for the most of tick bites in humans, peaked in May-June and August-September. Larvae and nymphs were simultaneously active in June and abundance of questing larvae and nymphs in the vegetation showed a positive association with bank vole abundance. Moreover, infesting larvae and nymphs were aggregated on bank voles, and the infestation of bank voles with I. ricinus larvae and nymphs was positively associated with bank vole abundance. CONCLUSION: Our results indicate early summer and early autumn as periods of increased risk for humans to encounter I. ricinus ticks in boreal urban forests and suggest a 2 years life-cycle for I. ricinus with two cohorts of ticks during the same year. Moreover, we identified a simultaneous activity of larvae and nymphs which allows co-feeding on the rodent host, which in turn supports the transmission of several important zoonotic tick-borne pathogens. Finally, we showed that a high density of the rodent host may enhance the risk that ticks and, potentially, tick-borne pathogens pose to human health.


Asunto(s)
Ixodes/fisiología , Animales , Arvicolinae/parasitología , Femenino , Larva , Masculino , Modelos Biológicos , Ninfa , Dinámica Poblacional , Estaciones del Año , Infestaciones por Garrapatas/parasitología , Infestaciones por Garrapatas/veterinaria , Factores de Tiempo
16.
Philos Trans R Soc Lond B Biol Sci ; 372(1719)2017 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-28289251

RESUMEN

This article reviews research on the evolutionary mechanisms leading to different transmission modes. Such modes are often under genetic control of the host or the pathogen, and often in conflict with each other via trade-offs. Transmission modes may vary among pathogen strains and among host populations. Evolutionary changes in transmission mode have been inferred through experimental and phylogenetic studies, including changes in transmission associated with host shifts and with evolution of the unusually complex life cycles of many parasites. Understanding the forces that determine the evolution of particular transmission modes presents a fascinating medley of problems for which there is a lack of good data and often a lack of conceptual understanding or appropriate methodologies. Our best information comes from studies that have been focused on the vertical versus horizontal transmission dichotomy. With other kinds of transitions, theoretical approaches combining epidemiology and population genetics are providing guidelines for determining when and how rapidly new transmission modes may evolve, but these are still in need of empirical investigation and application to particular cases. Obtaining such knowledge is a matter of urgency in relation to extant disease threats.This article is part of the themed issue 'Opening the black box: re-examining the ecology and evolution of parasite transmission'.


Asunto(s)
Enfermedades de los Animales/transmisión , Evolución Biológica , Interacciones Huésped-Parásitos , Animales , Interacciones Huésped-Patógeno
17.
Vector Borne Zoonotic Dis ; 17(5): 303-311, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28332937

RESUMEN

Yersinia enterocolitica and Yersinia pseudotuberculosis are important zoonotic bacteria causing human enteric yersiniosis commonly reported in Europe. All Y. pseudotuberculosis strains are considered pathogenic, while Y. enterocolitica include both pathogenic and nonpathogenic strains which can be divided into six biotypes (1A, 1B, and 2-5) and about 30 serotypes. The most common types causing yersiniosis in Europe are Y. enterocolitica bioserotypes 4/O:3 and 2/O:9. Strains belonging to biotype 1A are considered as nonpathogenic because they are missing important virulence genes like the attachment-invasion-locus (ail) gene in the chromosome and the virulence plasmid. The role of wild small mammals as a reservoir of enteropathogenic Yersinia spp. is still obscure. In this study, the presence of Yersinia spp. was examined from 1840 wild small mammals, including voles, mice, and shrews, trapped in Finland during a 7-year period. We isolated seven Yersinia species. Y. enterocolitica was the most common species, isolated from 8% of the animals; while most of these isolates represented nonpathogenic biotype 1A, human pathogenic bioserotype 2/O:9 was also isolated from a field vole. Y. pseudotuberculosis of bioserotype 1/O:2 was isolated from two shrews. The ail gene, which is typically only found in the isolates of biotypes 1B and 2-5 associated with yersiniosis, was frequently (23%) detected in the nonpathogenic isolates of biotype 1A and sporadically (6%) in Yersinia kristensenii isolates. Our results suggest that wild small mammals, especially voles, may serve as carriers for ail-positive Y. enterocolitica 1A and Y. kristensenii. We also demonstrate that voles and shrews sporadically excrete pYV-positive Y. enterocolitica 2/O:9 and Y. pseudotuberculosis 1/O:2, respectively, in their feces and, thus, can serve as a contamination source for vegetables by contaminating the soil.


Asunto(s)
Animales Salvajes , Enfermedades de los Roedores/microbiología , Roedores , Musarañas/microbiología , Yersiniosis/veterinaria , Yersinia/aislamiento & purificación , Animales , Finlandia/epidemiología , Enfermedades de los Roedores/epidemiología , Especificidad de la Especie , Yersinia/clasificación , Yersiniosis/epidemiología , Yersiniosis/microbiología
19.
Sci Rep ; 6: 21323, 2016 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-26887639

RESUMEN

Understanding the dynamics of zoonotic pathogens in their reservoir host populations is a prerequisite for predicting and preventing human disease epidemics. The human infection risk of Puumala hantavirus (PUUV) is highest in northern Europe, where populations of the rodent host (bank vole, Myodes glareolus) undergo cyclic fluctuations. We conducted a 7-year capture-mark-recapture study to monitor seasonal and multiannual patterns of the PUUV infection rate in bank vole populations exhibiting a 3-year density cycle. Infected bank voles were most abundant in mid-winter months during years of increasing or peak host density. Prevalence of PUUV infection in bank voles exhibited a regular, seasonal pattern reflecting the annual population turnover and accumulation of infections within each year cohort. In autumn, the PUUV transmission rate tracked increasing host abundance, suggesting a density-dependent transmission. However, prevalence of PUUV infection was similar during the increase and peak years of the density cycle despite a twofold difference in host density. This may result from the high proportion of individuals carrying maternal antibodies constraining transmission during the cycle peak years. Our exceptionally intensive and long-term dataset provides a solid basis on which to develop models to predict the dynamic public health threat posed by PUUV in northern Europe.


Asunto(s)
Arvicolinae/virología , Fiebre Hemorrágica con Síndrome Renal/epidemiología , Fiebre Hemorrágica con Síndrome Renal/veterinaria , Virus Puumala , Estaciones del Año , Animales , Europa (Continente)/epidemiología , Humanos , Dinámica Poblacional
20.
Infect Genet Evol ; 36: 156-164, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26375731

RESUMEN

Ljungan virus (LV) (family Picornaviridae, genus Parechovirus) is a suspected zoonotic pathogen with associations to human disease in Sweden. LV is a single-stranded RNA virus with a positive sense genome. There are five published Ljungan virus strains, three isolated from Sweden and two from America, and are classified into four genotypes. A further two strains described here were isolated from wild bank voles (Myodes glareolus) caught in Västmanlands county, Sweden in 1994. These strains were sequenced using next generation pyrosequencing technology on the GS454flx platform. Genetic and phylogenetic analysis of the obtained genomes confirms isolates LV340 and LV342 as two new putative members of genotype 2 along with LV145SL, with 92% and 99% nucleotide identities respectively. Only two codon sites throughout the entire genome were identified as undergoing positive selection, both situated within the VP3 structural region, in or near to major antigenic sites. Whilst these two strains do not constitute new genotypes they provide evidence, though weakly supported, which suggests the evolution of Ljungan viruses to be relatively slow, a characteristic unlike other picornaviruses. Additional genomic sequences are urgently required for Ljungan virus strains, particularly from different locations or hosts, to fully understand the evolutionary and epidemiological properties of this potentially zoonotic virus.


Asunto(s)
Arvicolinae/virología , Genoma Viral , Parechovirus/clasificación , Parechovirus/genética , Infecciones por Picornaviridae/veterinaria , Animales , Evolución Molecular , Genes Virales , Genotipo , Conformación de Ácido Nucleico , Parechovirus/aislamiento & purificación , Filogenia , ARN Viral/química , ARN Viral/genética , Selección Genética , Suecia , Regiones no Traducidas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...