Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Am J Bot ; 102(2): 197-207, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25667072

RESUMEN

PREMISE OF THE STUDY: Understanding the origin and early evolution of vascular plants requires thorough consideration of the gametophyte generation of ferns and lycophytes. Unfortunately, information about this generation is quite limited. To reveal the origin and evolution of varied gametophyte shapes, we used comparative morphological studies of meristem behavior of gametophytes of Lygodium japonicum, which exhibit the typical cordate shape. METHODS: Microscopic images of epi-illuminated growing gametophytes cultured from spores were captured periodically using a metallurgical microscope equipped with a digital camera to analyze the cell lineage in the meristem. KEY RESULTS: Gametophytes form from two meristems: the apical-cell-based meristem and the multicellular meristem. The triangular apical cell produces six to eight derivatives from two lateral facets, then disappears. Subsequently, the multicellular meristem, with a row of several rectangular cells, forms in the notch. These rectangular cells divide asynchronously in the periclinal and anticlinal walls to produce cells to both lateral sides and downward. Usually two, and sometimes three, cells located at the center of the meristem divide at a slower pace in the periclinal and anticlinal planes than others at the periphery. The cells at the periphery are pushed away and become involved in the wing base. CONCLUSIONS: The triangular apical cell behaves as a permanent initial cell. In the multicellular meristem, however, two or three central cells behave as initial cells that are transient and regulated in a position-dependent manner. The organization and behavior of both meristems are shared with the ribbon-shaped gametophytes of Colysis.


Asunto(s)
Helechos/crecimiento & desarrollo , Células Germinativas de las Plantas/crecimiento & desarrollo , Meristema/crecimiento & desarrollo , Células Vegetales , Evolución Biológica , División Celular , Helechos/anatomía & histología , Polypodiaceae , Esporas
2.
J Plant Res ; 125(3): 371-80, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-21904874

RESUMEN

Development of heavily asymmetric cordate gametophytes of Anemia phyllitidis (Anemiaceae), one of the schizaeoid ferns, was examined using a sequential observation technique; epi-illuminated light micrographs of the same growing gametophytes were taken approximately every 24 h. The apical cell-like wedge-shaped cell was produced once from the terminal cell of a germ filament, but it stopped dividing soon after production of one or two derivative cells. Without a functional apical cell, the gametophyte developed by intercalary growth until the early stage of wing formation, and then the multicellular (pluricellular) meristem arose from the lower lateral side of the gametophyte. This was in sharp contrast to the observation that the multicellular meristem forms in place of the apical cell in typical cordate gametophytes. Loss of the functional apical cell probably caused a site-shift in the multicellular meristem of the Anemia phyllitidis gametophyte during evolution from apical to lateral. The results suggest that apical cell-based and multicellular meristems are primarily independent of each other. The multicellular meristem produced cells equally in the distal and proximal directions to form wings in both directions but proximally produced cells divided much less frequently. As a result, a heavily asymmetric gametophyte was formed.


Asunto(s)
Helechos/citología , Helechos/crecimiento & desarrollo , Células Germinativas de las Plantas/citología , Células Germinativas de las Plantas/crecimiento & desarrollo , Meristema/citología , Meristema/crecimiento & desarrollo , División Celular
3.
Ann Bot ; 104(7): 1353-61, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19812067

RESUMEN

BACKGROUND AND AIMS: The gametophytes of most homosporous ferns are cordate-thalloid in shape. Some are strap- or ribbon-shaped and have been assumed to have evolved from terrestrial cordate shapes as an adaptation to epiphytic habitats. The aim of the present study was to clarify the morphological evolution of the strap-shaped gametophyte of microsoroids (Polypodiaceae) by precise analysis of their development. METHODS: Spores of Colysis decurrens collected in Kagoshima, Japan, were cultured and observed microscopically. Epi-illuminated micrographs of growing gametophytes were captured every 24 h, allowing analysis of the cell lineage of meristems. Light microscopy of resin-sections and scanning electron microscopy were also used. KEY RESULTS: Contrary to previous assumptions that strap-shaped Colysis gametophytes have no organized meristem, three different types of meristems are formed during development: (1) apical-cell based - responsible for early growth; (2) marginal - further growth, including gametophyte branching; and (3) multicellular - formation of cushions with archegonia. The cushion is two or three layers thick and intermittent. The apical-cell and multicellular meristems are similar to those of cordate gametophytes of other ferns, but the marginal meristem is unique to the strap-shaped gametophyte of this fern. CONCLUSIONS: The strap-shaped gametophytes of C. decurrens may have evolved from ancestors with a cordate shape by insertion of the marginal meristem phase between the first apical-cell-based meristem and subsequent multicellular meristem phases. Repeated retrieval of the marginal meristem at the multicellular meristem phase would result in indefinite prolongation of gametophyte growth, an ecological adaptation to epiphytic habitats.


Asunto(s)
Células Germinativas de las Plantas/crecimiento & desarrollo , Meristema/crecimiento & desarrollo , Polypodiaceae/crecimiento & desarrollo , Evolución Biológica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...