Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Langmuir ; 20(22): 9585-93, 2004 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-15491190

RESUMEN

The adsorption and desorption of Cd(2+) to large and nanometer-scale anatase crystals have been studied to determine the relationship between heavy metal adsorption properties and anatase particle size. A solvothermal method was used to synthesize very fine anatase nanocrystals with average grain sizes ranging from 8 to 20 nm. On a surface area basis, it was found that large and nanometer-scale anatase particles had similar maximum Cd(2+) adsorption capacities, while their adsorption slopes differed by more than 1 order of magnitude. The particle-size effect on adsorption is constant over a pH range of 4-7.5. The desorption of Cd(2+) from both particle sizes is completely reversible. The adsorption data have been modeled by the Basic Stern model using three monodentate surface complexes. It is proposed that intraparticle electrostatic repulsion may reduce the adsorption free energy significantly for nanometer-sized particles.

2.
Ground Water ; 40(2): 153-64, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-11916120

RESUMEN

The desorption of contaminants from soils/sediments is one of the most important processes controlling contaminant transport and environmental risks. None of the currently adopted desorption models can accurately quantify desorption at relatively low concentrations; these models often overestimate the desorption and thus the risks of hydrophobic organic chemicals, such as benzene and chlorinated solvents. In reality, desorption is generally found to be biphasic, with two soil-phase compartments. A new dual-equilibrium desorption (DED) model has been developed to account for the biphasic desorption. This model has been tested using a wide range of laboratory and field data and has been used to explain key observations related to underground storage tank plumes. The DED model relates the amount of a chemical sorbed to the aqueous concentration, with simple parameters including octanol-water partition coefficient, solubility, and fractional organic carbon; thus, it is the only biphasic model, to date, that is based on readily available parameters. The DED model can be easily incorporated into standard risk and transport models. According to this model, many regulatory standards of soils and sediments could be increased without increasing the risks.


Asunto(s)
Contaminación Ambiental/prevención & control , Modelos Teóricos , Contaminantes del Suelo , Adsorción , Sedimentos Geológicos/química , Compuestos Orgánicos , Medición de Riesgo , Solubilidad , Solventes/química
3.
Environ Pollut ; 108(1): 81-9, 2000 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15092969

RESUMEN

The chemical release rates from a field-contaminated sediment (Lake Charles, LA) using Tenax desorption were studied. Two dichlorobenzenes (m-, p-), hexachlorobutadiene, and hexachlorobenzene were investigated. Contrary to reports that sorption rates are inversely related to K(OW), the slow desorption rates were found to be similar for the four compounds. The data were modeled by a two-compartment irreversible adsorption and radial diffusion model. Desorption kinetics from the first irreversible compartment can be modeled by radial diffusion and assume an irreversible adsorption constant and soil tortuosity of 4.3. The desorption half-life is approximately 2-7 days. Desorption from the second irreversible compartment is very slow (half-life of approximately 0.32-8.62 years) presumably caused by entrapment in soil organic matter that increases the constrictivity of the solid phase to chemical diffusion. From the kinetic data, it is deduced that the diffusion pore diameter of the second irreversible compartment is approximately equal to the critical molecular diameter. The mass of chemicals in this highly constrictive irreversible compartment is approximately one-fourth of the maximum irreversible, or resistant, compartment. The slow kinetics observed in this study add additional support to the notion that the irreversibly sorbed chemicals are 'benign' to the environment.

4.
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...