Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Exp Mol Med ; 56(4): 904-921, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38556548

RESUMEN

Sarcopenia, the progressive decline in skeletal muscle mass and function, is observed in various conditions, including cancer and aging. The complex molecular biology of sarcopenia has posed challenges for the development of FDA-approved medications, which have mainly focused on dietary supplementation. Targeting a single gene may not be sufficient to address the broad range of processes involved in muscle loss. This study analyzed the gene expression signatures associated with cancer formation and 5-FU chemotherapy-induced muscle wasting. Our findings suggest that dimenhydrinate, a combination of 8-chlorotheophylline and diphenhydramine, is a potential therapeutic for sarcopenia. In vitro experiments demonstrated that dimenhydrinate promotes muscle progenitor cell proliferation through the phosphorylation of Nrf2 by 8-chlorotheophylline and promotes myotube formation through diphenhydramine-induced autophagy. Furthermore, in various in vivo sarcopenia models, dimenhydrinate induced rapid muscle tissue regeneration. It improved muscle regeneration in animals with Duchenne muscular dystrophy (DMD) and facilitated muscle and fat recovery in animals with chemotherapy-induced sarcopenia. As an FDA-approved drug, dimenhydrinate could be applied for sarcopenia treatment after a relatively short development period, providing hope for individuals suffering from this debilitating condition.


Asunto(s)
Autofagia , Transcriptoma , Animales , Autofagia/efectos de los fármacos , Ratones , Humanos , Biosíntesis de Proteínas/efectos de los fármacos , Modelos Animales de Enfermedad , Músculo Esquelético/metabolismo , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/patología , Perfilación de la Expresión Génica , Sarcopenia/tratamiento farmacológico , Sarcopenia/metabolismo , Sarcopenia/patología , Distrofia Muscular de Duchenne/tratamiento farmacológico , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patología
2.
J Transl Med ; 22(1): 53, 2024 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-38218903

RESUMEN

BACKGROUND: Neurodegenerative diseases, including Parkinson's disease, Amyotropic Lateral Sclerosis (ALS) and Alzheimer's disease, present significant challenges for therapeutic development due to drug delivery restrictions and toxicity concerns. Prevailing strategies often employ adeno-associated viral (AAV) vectors to deliver neuroprotective survival genes directly into the central nervous system (CNS). However, these methods have been limited by triggering immunogenic responses and risk of tumorigenicity, resulting from overexpression of survival genes in peripheral blood mononuclear cells (PBMC), thereby increasing the risk of tumorigenicity in specific immune cells. Thus, by coding selectively suppressive microRNA (miRNA) target sequences in AAV genome, we designed CNS-targeted neuroprotective gene expression vector system without leakage to blood cells. METHODS: To minimize the potential for transgene contamination in the blood, we designed a CNS-specific AAV system. Our system utilized a self-complementary AAV (scAAV), encoding a quadruple repeated target sequence of the hematopoietic cell-specific miR142-3p at the 3' untranslated region (UTR). As a representative therapeutic survival gene for Parkinson's disease treatment, we integrated DX2, an antagonistic splice variant of the apoptotic gene AIMP2, known to be implicated in Parkinson's disease, into the vector. RESULTS: This configuration ensured that transgene expression was stringently localized to the CNS, even if the vector found its way into the blood cells. A single injection of scAAV-DX2 demonstrated marked improvement in behavior and motor activity in animal models of Parkinson's disease induced by either Rotenone or 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Importantly, comprehensive preclinical data adhering to Good Laboratory Practice (GLP) standards revealed no adverse effects in the treated animals. CONCLUSIONS: Our CNS-specific vector system, which encodes a survival transgene DX2, signifies a promising avenue for safe gene therapy, avoiding unintended expression of survival gene in blood cells, applicable to various neurodegenerative diseases.


Asunto(s)
Enfermedad de Parkinson , Animales , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/terapia , Leucocitos Mononucleares , Encéfalo/metabolismo , Terapia Genética/métodos , Transgenes , Vectores Genéticos , Dependovirus/genética
3.
J Pharm Pharm Sci ; 10(4): 537-46, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-18261373

RESUMEN

PURPOSE: Flavonoids have been used as antioxidant, chemopreventive and chemosensitizing agents. In this study, eleven flavonoids containing a variety of hydroxy (OH) and/or methoxy (OMe) groups were evaluated for their antioxidant, cytotoxic and chemosensitizing effects to create a structure-activity relationship (SAR). METHODS: 1,1-Diphenyl-2-picrylhydrazyl (DPPH) radical solution-based chemical assay and and 2',7'-dichlorofluorescin diacetate (DCFH-DA) cellular-based assay were used to compare the free radical scavenging activity on the same molar concentration basis using the AML-2/DX100 cells which are characterized by the down-regulated expression of catalase and resulting supersensitiviy to hydrogen peroxide. The chemosensitization and cytotoxicity were determined by the MTT assay in the presence or absence of an anticancer drug using the P-glycoprotein-overexpressing AML-2 subline AML-2/D100 cells. RESULTS: The antioxidant activity of the flavonoid (3,5,7,3',4'-OH) was higher than that of the flavonoid (5,7,3',4'-OH). Flavonoids substituted with the various number of OMe decreased antioxidant activity. Flavonoids with 7-OH or 5,7-OH groups have the highest cytotoxicity, and flavonoids with 5,7-OMe group intermediate cytotoxicity. The IC50 values of flavonoid (5,7-OMe, 3',4',5'-OMe) and flavonoid (5,7-OMe, 4'-OMe), 0.4 M and 1.4 M. The IC50 values of flavonoid (5,6,7-OMe, 3',4'-OMe) and flavonoid (5,6,7-OMe, 3',4',5'-OMe), 3.2 uM and 0.9 M, respectively, and those of flavonoid (5,6,7-OMe, 3',4',5'-OMe) and flavonoid (5,7-OMe,3',4',5'-OMe) were 0.9 M and 0.4 M, respectively. CONCLUSIONS: These results suggest that flavonoids with 3-OH group play a positive role in antioxidant activities, flavonoids with 5-OH and/or 7-OH groups show the higher cytotoxicity, and flavonoids with 3'-OMe and/or 5'-OMe groups plays positive but 6-OMe groups negative roles in the P-glycoprotein (Pgp) inhibition. It is believed that these SAR results can be taken into account for the development of flavonoids with high therapeutic index.


Asunto(s)
Antioxidantes/química , Flavonoides/química , Antioxidantes/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Relación Dosis-Respuesta a Droga , Flavonoides/farmacología , Depuradores de Radicales Libres/química , Humanos , Radical Hidroxilo/química , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...