Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
BMC Med ; 22(1): 324, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39113028

RESUMEN

BACKGROUND: A stent with characteristics of a hybrid design may have advantages in improving the patency of symptomatic iliofemoral vein obstruction. This study assessed the safety and effectiveness of the V-Mixtent Venous Stent in treating symptomatic iliofemoral outflow obstruction. METHODS: Eligible patients had a Clinical-Etiologic-Anatomic-Physiologic (CEAP) C classification of ≥ 3 or a Venous Clinical Severity Score (VCSS) pain score of ≥ 2. The primary safety endpoint was the rate of major adverse events within 30 days. The primary effectiveness endpoint was the 12-month primary patency rate. Secondary endpoints included changes in VCSS from baseline to 6 and 12 months, alterations in CEAP C classification, Chronic Venous Disease Quality of Life Questionnaire (CIVIQ-14) scores at 12 months, and stent durability measures. RESULTS: Between December 2020 and November 2021, 171 patients were enrolled across 15 institutions. A total of 185 endovenous stents were placed, with 91.81% of subjects receiving one stent and 8.19% receiving 2 stents. Within 30 days, only two major adverse events occurred (1.17%; 95% confidence interval [CI], 0.14-4.16%), below the literature-defined performance goal of 11% (P < .001). The 12-month primary patency rate (91.36%; 95% CI, 85.93-95.19%; P < .001) exceeded the literature-defined performance goal. VCSS changes from baseline demonstrated clinical improvement at 6 months (- 4.30 ± 3.66) and 12 months (- 4.98 ± 3.67) (P < .001). Significant reduction in symptoms, as measured by CEAP C classification and CIVIQ-14, was observed from pre-procedure to 12 months (P < .001). CONCLUSIONS: The 12-month outcomes confirm the safety and effectiveness of the V-Mixtent Venous Stent in managing symptomatic iliofemoral venous outflow obstruction, including clinical symptom improvement compared to before treatment.


Asunto(s)
Vena Femoral , Vena Ilíaca , Stents , Humanos , Masculino , Femenino , Persona de Mediana Edad , Estudios Prospectivos , Vena Femoral/cirugía , Vena Ilíaca/cirugía , Resultado del Tratamiento , Adulto , Anciano , Calidad de Vida
2.
Brain Behav Immun ; 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39197546

RESUMEN

Alzheimer's disease (AD) pathogenesis has been associated with the gut microbiome and its metabolites, though the specific mechanisms have remained unclear. In our study, we used a multi-omics approach to identify specific microbial strains and metabolites that could potentially mitigate amyloidopathy in 5xFAD mice, a widely used model for AD research. Among the microbial strains tested, three showed promising results in reducing soluble amyloid-beta (Aß) levels. Plasma metabolomics analysis revealed an enrichment of tryptophan (Trp) and indole-3-lactic acid (ILA) in mice with reduced soluble Aß levels, suggesting a potential preventative role. The administration of a combined treatment of Trp and ILA prevented both Aß accumulation and cognitive impairment in the 5xFAD mice. Our investigation into the mechanism revealed that ILA's effect on reducing Aß levels was mediated through the activation of microglia and astrocytes, facilitated by the aryl hydrocarbon receptor (AhR) signaling pathway. These mechanisms were verified through experiments in 5xFAD mice that included an additional group with the administration of ILA alone, as well as in vitro experiments using an AhR inhibitor. Clinical data analysis revealed a greater abundance of Lactobacillus reuteri in the gut of healthy individuals compared to those at early stages of Aß accumulation or with mild cognitive impairment. Additionally, human post-mortem brain analyses showed an increased expression of genes associated with the AhR signaling pathway in individuals without AD, suggesting a protective effect against AD progression. Our results indicate that ILA from gut microbes could inhibit the progression of amyloidopathy in 5xFAD mice through activation of AhR signaling in the brain.

3.
Adv Sci (Weinh) ; : e2400064, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38981007

RESUMEN

Microglia play a crucial role in synaptic elimination by engulfing dystrophic neurons via triggering receptors expressed on myeloid cells 2 (TREM2). They are also involved in the clearance of beta-amyloid (Aß) plaques in Alzheimer's disease (AD); nonetheless, the driving force behind TREM2-mediated phagocytosis of beta-amyloid (Aß) plaques remains unknown. Here, using advanced 2D/3D/4D co-culture systems with loss-of-function mutations in TREM2 (a frameshift mutation engineered in exon 2) brain organoids/microglia/assembloids, it is identified that the clearance of Aß via TREM2 is accelerated by externalized phosphatidylserine (ePtdSer) generated from dystrophic neurons surrounding the Aß plaques. Moreover, it is investigated whether microglia from both sporadic (CRISPR-Cas9-based APOE4 lines) and familial (APPNL-G-F/MAPT double knock-in mice) AD models show reduced levels of TREM2 and lack of phagocytic activity toward ePtdSer-positive Aß plaques. Herein new insight is provided into TREM2-dependent microglial phagocytosis of Aß plaques in the context of the presence of ePtdSer during AD progression.

4.
Nat Commun ; 15(1): 5139, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886388

RESUMEN

Although it is well documented that mountains tend to exhibit high biodiversity, how geological processes affect the assemblage of montane floras is a matter of ongoing research. Here, we explore landform-specific differences among montane floras based on a dataset comprising 17,576 angiosperm species representing 140 Chinese mountain floras, which we define as the collection of all angiosperm species growing on a specific mountain. Our results show that igneous bedrock (granitic and karst-granitic landforms) is correlated with higher species richness and phylogenetic overdispersion, while the opposite is true for sedimentary bedrock (karst, Danxia, and desert landforms), which is correlated with phylogenetic clustering. Furthermore, we show that landform type was the primary determinant of the assembly of evolutionarily older species within floras, while climate was a greater determinant for younger species. Our study indicates that landform type not only affects montane species richness, but also contributes to the composition of montane floras. To explain the assembly and differentiation of mountain floras, we propose the 'floristic geo-lithology hypothesis', which highlights the role of bedrock and landform processes in montane floristic assembly and provides insights for future research on speciation, migration, and biodiversity in montane regions.


Asunto(s)
Biodiversidad , Magnoliopsida , Filogenia , China , Magnoliopsida/crecimiento & desarrollo , Altitud , Fenómenos Geológicos , Ecosistema
5.
Adv Sci (Weinh) ; 11(20): e2304357, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38482922

RESUMEN

Microglial neuroinflammation appears to be neuroprotective in the early pathological stage, yet neurotoxic, which often precedes neurodegeneration in Alzheimer's disease (AD). However, it remains unclear how the microglial activities transit to the neurotoxic state during AD progression, due to complex neuron-glia interactions. Here, the mechanism of detrimental microgliosis in AD by employing 3D human AD mini-brains, brain tissues of AD patients, and 5XFAD mice is explored. In the human and animal AD models, amyloid-beta (Aß)-overexpressing neurons and reactive astrocytes produce interferon-gamma (IFNγ) and excessive oxidative stress. IFNγ results in the downregulation of mitogen-activated protein kinase (MAPK) and the upregulation of Kelch-like ECH-associated Protein 1 (Keap1) in microglia, which inactivate nuclear factor erythroid-2-related factor 2 (Nrf2) and sensitize microglia to the oxidative stress and induces a proinflammatory microglia via nuclear factor kappa B (NFκB)-axis. The proinflammatory microglia in turn produce neurotoxic nitric oxide and proinflammatory mediators exacerbating synaptic impairment, phosphorylated-tau accumulation, and discernable neuronal loss. Interestingly, recovering Nrf2 in the microglia prevents the activation of proinflammatory microglia and significantly blocks the tauopathy in AD minibrains. Taken together, it is envisioned that IFNγ-driven Nrf2 downregulation in microglia as a key target to ameliorate AD pathology.


Asunto(s)
Enfermedad de Alzheimer , Modelos Animales de Enfermedad , Interferón gamma , Microglía , Factor 2 Relacionado con NF-E2 , Estrés Oxidativo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Animales , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Microglía/metabolismo , Humanos , Ratones , Interferón gamma/metabolismo , Ratones Transgénicos
6.
Front Microbiol ; 15: 1360225, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38450163

RESUMEN

Colorectal cancer (CRC) is a common malignancy affecting the gastrointestinal tract worldwide. The etiology and progression of CRC are related to factors such as environmental influences, dietary structure, and genetic susceptibility. Intestinal microbiota can influence the integrity of the intestinal mucosal barrier and modulate intestinal immunity by secreting various metabolites. Dysbiosis of the intestinal microbiota can affect the metabolites of the microbial, leading to the accumulation of toxic metabolites, which can trigger chronic inflammation or DNA damage and ultimately lead to cellular carcinogenesis and the development of CRC. Postbiotics are preparations of inanimate microorganisms or their components that are beneficial to the health of the host, with the main components including bacterial components (e.g., exopolysaccharides, teichoic acids, surface layer protein) and metabolites (e.g., short-chain fatty acids, tryptophan metabolite, bile acids, vitamins and enzymes). Compared with traditional probiotics, it has a more stable chemical structure and higher safety. In recent years, it has been demonstrated that postbiotics are involved in regulating intestinal microecology and improving the progression of CRC, which provides new ideas for the prevention and diagnosis of CRC. In this article, we review the changes in intestinal microbiota in different states of the gut and the mechanisms of anti-tumor activity of postbiotic-related components, and discuss the potential significance of postbiotics in the diagnosis and treatment of CRC. This reviews the changes and pathogenesis of intestinal microbiota in the development of CRC, and summarizes the relevant mechanisms of postbiotics in resisting the development of CRC in recent years, as well as the advantages and limitations of postbiotics in the treatment process of CRC.

7.
Adv Sci (Weinh) ; 11(15): e2305326, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38342616

RESUMEN

Botulinum neurotoxin serotype A (BoNT/A) is widely used in therapeutics and cosmetics. The effects of multi-dosed BoNT/A treatment are well documented on the peripheral nervous system (PNS), but much less is known on the central nervous system (CNS). Here, the mechanism of multi-dosed BoNT/A leading to CNS neurodegeneration is explored by using the 3D human neuron-glia model. BoNT/A treatment reduces acetylcholine, triggers astrocytic transforming growth factor beta, and upregulates C1q, C3, and C5 expression, inducing microglial proinflammation. The disintegration of the neuronal microtubules is escorted by microglial nitric oxide, interleukin 1ß, tumor necrosis factor α, and interleukin 8. The microglial proinflammation eventually causes synaptic impairment, phosphorylated tau (pTau) aggregation, and the loss of the BoNT/A-treated neurons. Taking a more holistic approach, the model will allow to assess therapeutics for the CNS neurodegeneration under the prolonged use of BoNT/A.


Asunto(s)
Microglía , Neuronas , Humanos , Microglía/metabolismo , Astrocitos
8.
Sci Rep ; 14(1): 744, 2024 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-38185738

RESUMEN

Aluminum oxide nanoparticle (AlNP), a ubiquitous neurotoxin highly enriched in air pollution, is often produced as an inevitable byproduct in the manufacturing of industrial products such as cosmetics and metal materials. Meanwhile, ALNP has emerged as a significant public health concern due to its potential association with neurological diseases. However, the studies about the neurotoxic effects of AlNP are limited, partially due to the lack of physiologically relevant human neurovascular unit with innate immunity (hNVUI). Here, we employed our AlNP-treated hNVUI model to investigate the underlying mechanism of AlNP-driven neurodegeneration. First, we validated the penetration of AlNP across a blood-brain barrier (BBB) compartment and found AlNP-derived endothelial cellular senescence through the p16 and p53/p21 pathways. Our study showed that BBB-penetrating AlNP promoted reactive astrocytes, which produced a significant level of reactive oxygen species (ROS). The astrocytic neurotoxic factors caused neuronal damage, including the synaptic impairment, the accumulation of phosphoric-tau proteins, and even neuronal death. Our study suggests that AlNP could be a potential environmental risk factor of neurological disorders mediated by neuroinflammation.


Asunto(s)
Contaminación del Aire , Síndromes de Neurotoxicidad , Humanos , Óxido de Aluminio/toxicidad , Barrera Hematoencefálica , Muerte Celular , Senescencia Celular
9.
Small ; 20(23): e2308815, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38161254

RESUMEN

Non-neural extracellular matrix (ECM) has limited application in humanized physiological neural modeling due to insufficient brain-specificity and safety concerns. Although brain-derived ECM contains enriched neural components, certain essential components are partially lost during the decellularization process, necessitating augmentation. Here, it is demonstrated that the laminin-augmented porcine brain-decellularized ECM (P-BdECM) is xenogeneic factor-depleted as well as favorable for the regulation of human neurons, astrocytes, and microglia. P-BdECM composition is comparable to human BdECM regarding brain-specificity through the matrisome and gene ontology-biological process analysis. As augmenting strategy, laminin 111 supplement promotes neural function by synergic effect with laminin 521 in P-BdECM. Annexin A1(ANXA1) and Peroxiredoxin(PRDX) in P-BdECM stabilized microglial and astrocytic behavior under normal while promoting active neuroinflammation in response to neuropathological factors. Further, supplementation of the brain-specific molecule to non-neural matrix also ameliorated glial cell inflammation as in P-BdECM. In conclusion, P-BdECM-augmentation strategy can be used to recapitulate humanized pathophysiological cerebral environments for neurological study.


Asunto(s)
Encéfalo , Diferenciación Celular , Matriz Extracelular , Laminina , Humanos , Matriz Extracelular/metabolismo , Matriz Extracelular/química , Laminina/química , Encéfalo/metabolismo , Animales , Neuronas/metabolismo , Enfermedades Neuroinflamatorias/metabolismo , Porcinos , Astrocitos/metabolismo , Microglía/metabolismo , Inflamación/patología
10.
J Prosthet Dent ; 2023 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-37957064

RESUMEN

STATEMENT OF PROBLEM: The introduction of digital technology in dentistry has resulted in a shift from conventional methods to digital techniques. However, mounting a digitized dental cast on a virtual articulator is challenging. Several techniques have been suggested to resolve this problem, but in the absence of a standardized method, digitized dental casts are often mounted arbitrarily on a virtual articulator. PURPOSE: The purpose of this clinical study was to compare the accuracy of a novel virtual facebow transfer (VM) technique based on cone beam computed tomography (CBCT) with that of the conventional mounting (CM) technique using a facebow. MATERIAL AND METHODS: Five repeated mountings were performed with each technique for 15 participants. In the CM group, dental casts were mounted using a facebow record and scanned for transmission to the virtual dental space. In the VM group, digital dental casts were mounted on the standard tessellation language file of a reference articulator by reconstructing a file of the participant's skull from CBCT data. In this group, a virtual facebow, prepared by scanning the articulator and facebow complex, was used. After the CM and VM casts had been aligned, the coordinates of target points set on the maxillary right central incisor, maxillary right first molar, and maxillary left first molar were determined, and the mean ±standard deviation distance between the target points was calculated to compare the precision of the techniques. Additionally, vectors of the target point on the maxillary right central incisor were compared to analyze the spatial difference between the techniques. Finally, the occlusal plane angle was calculated. For the correlation analysis of repeated measured data, a 1-way repeated measures analysis of variance (ANOVA) was first performed. The Kolmogorov-Smirnov test was performed to determine normality, and a paired t test and the Wilcoxon signed rank test were performed for normally and nonnormally distributed variables, respectively (α=.05). RESULTS: The mean distance between target points was significantly greater in the CM group (4.72 ±1.45 to 5.17 ±1.54 mm) than in the VM group (2.14 ±0.58 to 2.35 ±0.60 mm) (P<.05). The standard deviation between target points was significantly greater in the CM group (1.60 ±0.64 to 2.30 ±0.87 mm) than in the VM group (0.74 ±0.23 to 1.12 ±0.45 mm) (P<.05). The maxillary right central incisor was located more anteriorly in the VM group than in the CM (100%, P<.05) group. The occlusal plane angle was significantly steeper in the CM group than in the VM group (8.14 degrees versus 2.13 degrees, P<.05). CONCLUSIONS: The VM technique was more precise than the CM technique. VM casts were positioned ahead of CM casts. Further, the occlusal plane angle tended to be steeper with the CM technique than with the VM technique.

12.
Mar Drugs ; 21(9)2023 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-37755082

RESUMEN

The protein extract of Ulva australis hydrolyzed with Alcalase and Flavourzyme was found to have multi-functional properties, including total antioxidant capacity (TAC), collagenase inhibitory, and antibacterial activities. The #5 fraction (SP5) and #7 fraction (SP7) of U. australis hydrolysate from cation-exchange chromatography displayed significantly high TAC, collagenase inhibitory, and antibacterial effects against Propionibacterium acnes, and only the Q3 fraction from anion-exchange chromatography displayed high multi-functional activities. Eight of 42 peptides identified by MALDI-TOF/MS and Q-TOF/MS/MS were selected from the results for screening with molecular docking on target proteins and were then synthesized. Thr-Gly-Thr-Trp (TGTW) displayed ABTS [2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid)] radical scavenging activity. The effect of TAC as Trolox equivalence was dependent on the concentration of TGTW. Asn-Arg-Asp-Tyr (NRDY) and Arg-Asp-Arg-Phe (RDRF) exhibited collagenase inhibitory activity, which increased according to the increase in concentration, and their IC50 values were 0.95 mM and 0.84 mM, respectively. Peptides RDRF and His-Ala-Val-Tyr (HAVY) displayed anti-P. Acnes effects, with IC50 values of 8.57 mM and 13.23 mM, respectively. These results suggest that the U. australis hydrolysate could be a resource for the application of effective nutraceuticals and cosmetics.

13.
Neurosci Lett ; 814: 137460, 2023 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-37619699

RESUMEN

Growing evidence suggests that probiotics can ameliorate depression by regulating the microbiota-gut-brain axis. However, the mechanism of action of probiotics in depressive disorders remains incompletely understood. This study aimed to investigate the effect of Lacticaseibacillus rhamnosus TF318 in a corticosterone (CORT)-induced rat model of depression. The sucrose preference test (SPT) and Morris water maze (MWM) test showed that oral administration of L. rhamnosus TF318 for 21 d significantly prevented depressive behaviors. Administration of L. rhamnosus TF318 resulted in lower hippocampal levels of adrenocorticotropic hormone and corticotropin-releasing factor and serum levels of CORT and restoration of hippocampal levels of 5-hydroxytryptamine, dopamine, and norepinephrine. A marked increase was observed in the hippocampal concentration of brain-derived neurotrophic factor (BDNF), a change that may have involved the cyclic adenosine monophosphate (cAMP)/cAMP response element-binding (CREB)/BDNF signaling pathway. Treatment with L. rhamnosus TF318 corrected CORT-induced abnormalities in the gut microbiota, significantly increasing the relative abundance of Firmicutes. In conclusion, supplementation with L. rhamnosus TF318 prevented CORT-induced depressive behaviors by upregulating BDNF expression and modulating gut microbiota, suggesting that this strain has the potential as a novel probiotic with antidepressant effects.


Asunto(s)
Depresión , Lacticaseibacillus rhamnosus , Ratas , Animales , Depresión/tratamiento farmacológico , Depresión/prevención & control , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Lacticaseibacillus , Antidepresivos/farmacología , Hipocampo/metabolismo
14.
Nat Protoc ; 18(9): 2838-2867, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37542184

RESUMEN

Neuroinflammation has either beneficial or detrimental effects, depending on risk factors and neuron-glia interactions in neurological disorders. However, studying neuroinflammation has been challenging due to the complexity of cell-cell interactions and lack of physio-pathologically relevant neuroinflammatory models. Here, we describe our three-dimensional microfluidic multicellular human neural culture model, referred to as a 'brain-on-a-chip' (BoC). This elucidates neuron-glia interactions in a controlled manner and recapitulates pathological signatures of the major neurological disorders: dementia, brain tumor and brain edema. This platform includes a chemotaxis module offering a week-long, stable chemo-gradient compared with the few hours in other chemotaxis models. Additionally, compared with conventional brain models cultured with mixed phenotypes of microglia, our BoC can separate the disease-associated microglia out of heterogeneous population and allow selective neuro-glial engagement in three dimensions. This provides benefits of interpreting the neuro-glia interactions while revealing that the prominent activation of innate immune cells is the risk factor leading to synaptic impairment and neuronal loss, validated in our BoC models of disorders. This protocol describes how to fabricate and implement our human BoC, manipulate in real time and perform end-point analyses. It takes 2 d to set up the device and cell preparations, 1-9 weeks to develop brain models under disease conditions and 2-3 d to carry out analyses. This protocol requires at least 1 month training for researchers with basic molecular biology techniques. Taken together, our human BoCs serve as reliable and valuable platforms to investigate pathological mechanisms involving neuroinflammation and to assess therapeutic strategies modulating neuroinflammation in neurological disorders.


Asunto(s)
Enfermedades Neurodegenerativas , Enfermedades Neuroinflamatorias , Humanos , Dispositivos Laboratorio en un Chip , Enfermedades Neuroinflamatorias/patología , Técnicas de Cultivo de Célula , Enfermedades Neurodegenerativas/patología
15.
Biomater Res ; 27(1): 71, 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37468961

RESUMEN

BACKGROUND: Glial scar formation is a reactive glial response confining injured regions in a central nervous system. However, it remains challenging to identify key factors formulating glial scar in response to glioblastoma (GBM) due to complex glia-GBM crosstalk. METHODS: Here, we constructed an astrocytic scar enclosing GBM in a human assembloid and a mouse xenograft model. GBM spheroids were preformed and then co-cultured with microglia and astrocytes in 3D Matrigel. For the xenograft model, U87-MG cells were subcutaneously injected to the Balb/C nude female mice. RESULTS: Additional glutamate was released from GBM-microglia assembloid by 3.2-folds compared to GBM alone. The glutamate upregulated astrocytic monoamine oxidase-B (MAO-B) activity and chondroitin sulfate proteoglycans (CSPGs) deposition, forming the astrocytic scar and restricting GBM growth. Attenuating scar formation by the glutamate-MAO-B inhibition increased drug penetration into GBM assembloid, while reducing GBM confinement. CONCLUSIONS: Taken together, our study suggests that astrocytic scar could be a critical modulator in GBM therapeutics.

16.
Front Neurol ; 14: 1139047, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37396762

RESUMEN

Alexander disease (AxD) is a rare autosomal dominant astrogliopathy caused by mutations in the gene encoding for glial fibrillary acidic protein. AxD is divided into two clinical subtypes: type I and type II AxD. Type II AxD usually manifests bulbospinal symptoms and occurs in the second decade of life or later, and its radiologic features include tadpole-like appearance of the brainstem, ventricular garlands, and pial signal changes along the brainstem. Recently, eye-spot signs in the anterior medulla oblongata (MO) have been reported in patients with elderly-onset AxD. In this case, an 82-year-old woman presented with mild gait disturbance and urinary incontinence without bulbar symptoms. The patient died 3 years after symptom onset as a result of rapid neurological deterioration after a minor head injury. MRI showed signal abnormalities resembling angel wings in the middle portion of the MO along with hydromyelia of the cervicomedullary junction. Herein, we report the case of this patient with older adult-onset AxD with an atypical clinical course and distinctive MRI findings.

17.
Front Neurol ; 14: 1198728, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37396771

RESUMEN

Background: To analyze the clinical phenotype of hereditary spastic paraplegia (HSP) caused by SPG11 mutations (SPG11-HSP). Methods: Among the 17 patients with sporadic HSP who performed whole exome sequencing analysis, six were diagnosed with SPG11-HSP. The clinical and radiologic findings and the results of the electrodiagnostic and neuropsychologic tests were reviewed retrospectively. Results: The median age at onset was 16.5 years (range, 13-38 years). Progressive spastic paraparesis was a core feature, and the median spastic paraplegia rating scale score was 24/52 (range, 16-31 points). Additional major symptoms were pseudobulbar dysarthria, intellectual disability, bladder dysfunction, and being overweight. Minor symptoms included upper limbs rigidity and sensory axonopathy. The median body mass index was 26.2 kg/m2 (range, 25.2-32.3 kg/m2). The thin corpus callosum (TCC) was predominant at the rostral body or anterior midbody, and the ears of the lynx sign was seen in all. The follow-up MRI showed the worsening of periventricular white matter (PVWM) signal abnormalities with ventricular widening or the extension of the TCC. Motor evoked potentials (MEP) to the lower limbs showed an absent central motor conduction time (CMCT) in all subjects. The upper limb CMCT was initially absent in three subjects, although it became abnormal in all at the follow-up. The mini-mental state examination median score was 27/30 (range, 26-28) with selective impairment of the attention/calculation domain. The median score of the full-scale intelligence quotient was 48 (range, 42-72) on the Wechsler Adult Intelligence Scale test. Conclusion: Attention/calculation deficits and being overweight as well as pseudobulbar dysarthria were common additional symptoms in patients with SPG11-HSP. The rostral body and anterior midbody of the corpus callosum were preferentially thinned, especially in the early stage of the disease. The TCC, PVWM signal changes, and MEP abnormality worsened as the disease progressed.

18.
J Prosthet Dent ; 2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37202234

RESUMEN

STATEMENT OF PROBLEM: The cement gap setting affects the marginal and internal fits depending on the crown material and manufacturing method (subtractive or additive manufacturing). However, information on the effects of cement space settings in the computer-aided design (CAD) software program, which is used to aid the manufacturing with 3-dimensional (3D) printing-type resin material, is lacking, and recommendations for optimal marginal and internal fit are needed. PURPOSE: The purpose of this in vitro study was to evaluate how cement gap settings affect the marginal and internal fit of a 3D-printed definitive resin crown. MATERIAL AND METHODS: After scanning a prepared typodont left maxillary first molar, a crown was designed with cement spaces of 35, 50, 70, and 100 µm by using a CAD software program. A total of 14 specimens per group were 3D printed from definitive 3D-printing resin. By using the replica technique, the intaglio surface of the crown was duplicated, and the duplicated specimen was sectioned in the buccolingual and mesiodistal directions. Statistical analyses were performed using the Kruskal-Wallis and the Mann-Whitney post hoc tests (α=.05). RESULTS: Although the median values of the marginal gaps were within the clinically acceptable limit (<120 µm) for all the groups, the smallest marginal gaps were obtained with the 70-µm setting. For the axial gaps, there was no observed difference in the 35-, 50-, and 70-µm groups, and the 100-µm group showed the largest gap. The smallest axio-occlusal and occlusal gaps were obtained with the 70-µm setting. CONCLUSIONS: Based on the findings of this in vitro study, a 70-µm cement gap setting is recommended for optimal marginal and internal fit of 3D-printed resin crowns.

19.
Int J Prosthodont ; 2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37256259

RESUMEN

PURPOSE: To develop the most compatible cementation protocol for ensuring minimal residual cement and optimal retention of cement-retained implant-supported fixed dental prostheses. MATERIALS AND METHODS: Thirty custom implant abutments and zirconia crowns with bilateral wings were prepared. Three cement types were used for cementation: non-eugenol resin cement (Premier Implant Cement; Group IC), dual-polymerizing self-adhesive resin cement (SmartCem 2; Group SC), and zinc oxide eugenol cement (Temp-Bond; Group TB) (n=30 per group). Three cementation methods were applied for each cement type and the samples were divided into subgroups: 1) cement was injected using a graduated syringe (IC-N, SC-N, and TB-N); 2) a cementation jig made with a silicone impression material and temporary resin material was used (IC-CJ, SC-CJ, and TB-CJ); 3) three dimensionally (3D) printed abutments were used as replicas for cementation (IC-3DP, SC-3DP, and TB-3DP). The amount of cement injected, surface area of the residual cement, and retentive strength were measured. Kruskal-Wallis and post-hoc Mann-Whitney tests were used for statistical analyses. RESULTS: Excess cement was not observed when cementation jig or 3D-printed replicas were used. For IC and SC subgroups, non-use of these auxiliary tools resulted in significantly higher amounts of injected cement. The retentive strength differed significantly among the IC subgroups, but not among the SC subgroups. The retentive strength of subgroups TB-N and TB-CJ was significantly higher than that of subgroup TB-3DP. CONCLUSIONS: To prolong the main purpose of each cement type, a cementation jig or 3D-printed replica is highly recommended regardless of the cement type. Int J Prosthodont 2023. doi: 10.11607/ijp.8344.

20.
Dent Mater ; 39(7): 648-658, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37210307

RESUMEN

OBJECTIVES: This study aimed to assess the effects of airborne-particle abrasion (APA) on the flexural strength of two types of 3D-printing resins for permanent restoration. METHODS: Two types of 3D printing resins (urethane dimethacrylate oligomer; UDMA, ethoxylated bisphenol-A dimethacrylate; BEMA) constituting different components were printed. The specimen surfaces were subjected to APA using 50 and 110 µm alumina particles under different pressures. The three-point flexural strength was measured for each surface treatment group, and a Weibull analysis was performed. Surface characteristics were analyzed via surface roughness measurements and scanning electron microscopy. Dynamic mechanical analysis and nano-indentation measurements were limited to the control group. RESULTS: The three-point flexural strength according to the surface treatment was significantly lower in the UDMA group for large particle sizes and at high pressures; the BEMA group demonstrated low flexural strength for large particle sizes regardless of the pressure. After thermocycling, the flexural strengths of UDMA and BEMA significantly decreased in the group subjected to surface treatment. The Weibull modulus and characteristic strength of UDMA were higher than those of BEMA under different APA and thermocycling conditions. As the abrasion pressure and particle size increased, a porous surface formed, and the surface roughness increased. Compared with BEMA, UDMA featured a lower strain, greater strain recovery, and a negligible increase in modulus according to strain. SIGNIFICANCE: Thus, surface roughness increased with the sandblasting particle size and pressure of the 3D-printing resin. Hence, a suitable surface treatment method to improve adhesion can be determined by considering physical property changes.


Asunto(s)
Materiales Dentales , Resistencia Flexional , Ensayo de Materiales , Propiedades de Superficie , Impresión Tridimensional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...