Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Neurophysiol ; 132(1): 177-183, 2024 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-38836296

RESUMEN

The reliable induction of long-term potentiation (LTP) in the dentate gyrus (DG) in vitro requires the blockade of the γ-aminobutyric acid A (GABAA) receptor. In these studies we examined the effectiveness of the specific GABAA receptor antagonist bicuculline methiodide (BMI) in facilitating LTP in the DG from hippocampal slices obtained from either C57Bl/6 mice or Sprague-Dawley rats, two species commonly used for electrophysiology. In the C57Bl/6 mice, maximal short-term potentiation and LTP in the DG were produced with a concentration of 5 µM BMI. In contrast, a concentration of 10 µM BMI was required to produce maximal short-term potentiation and LTP in the DG of Sprague-Dawley rats. These results reveal that there are species differences in the optimal amount of BMI required to produce robust and reliable LTP in the rodent DG in vitro and highlight the need to take consideration of the species being used when choosing concentrations of pharmacological agents to employ for electrophysiological use.NEW & NOTEWORTHY In this report we provide specific neurophysiological evidence for concentrations of GABAA antagonist required to study long-term potentiation in the medial perforant pathway of the dentate gyrus. Two commonly used species, Sprague-Dawley rats and C57Bl/6 mice, require different concentrations of bicuculline methiodide to induce optimal short-term and long-term potentiation.


Asunto(s)
Bicuculina , Giro Dentado , Antagonistas de Receptores de GABA-A , Potenciación a Largo Plazo , Ratones Endogámicos C57BL , Ratas Sprague-Dawley , Animales , Potenciación a Largo Plazo/efectos de los fármacos , Potenciación a Largo Plazo/fisiología , Giro Dentado/efectos de los fármacos , Giro Dentado/fisiología , Bicuculina/farmacología , Bicuculina/análogos & derivados , Antagonistas de Receptores de GABA-A/farmacología , Ratones , Ratas , Masculino , Receptores de GABA-A/efectos de los fármacos , Receptores de GABA-A/metabolismo , Receptores de GABA-A/fisiología , Especificidad de la Especie
2.
Sci Rep ; 8(1): 17931, 2018 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-30560948

RESUMEN

Mutations in the presenilin genes (PS1 and PS2) are a major cause of familial-Alzheimer's disease (FAD). Presenilins regulate neurogenesis in the developing brain, with loss of PS1 inducing aberrant premature differentiation of neural progenitor cells, and additional loss of PS2 exacerbating this effect. It is unclear, however, whether presenilins are involved in adult neurogenesis, a process that may be impaired in Alzheimer's disease within the hippocampus. To investigate the requirement of presenilins in adult-generated dentate granule neurons, we examined adult neurogenesis in the PS2-/- adult brain and then employ a retroviral approach to ablate PS1 selectively in dividing progenitor cells of the PS2-/- adult brain. Surprisingly, the in vivo ablation of both presenilins resulted in no defects in the survival and differentiation of adult-generated neurons. There was also no change in the morphology or functional properties of the retroviral-labeled presenilin-null cells, as assessed by dendritic morphology and whole-cell electrophysiology analyses. Furthermore, while FACS analysis showed that stem and progenitor cells express presenilins, inactivation of presenilins from these cells, using a NestinCreERT2 inducible genetic approach, demonstrated no changes in the proliferation, survival, or differentiation of adult-generated cells. Therefore, unlike their significant role in neurogenesis during embryonic development, presenilins are not required for cell-intrinsic regulation of adult hippocampal neurogenesis.


Asunto(s)
Enfermedad de Alzheimer/genética , Hipocampo/citología , Presenilina-1/genética , Presenilina-2/genética , Animales , Diferenciación Celular , Proliferación Celular , Supervivencia Celular , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Humanos , Ratones , Mutación , Neurogénesis
3.
Stem Cell Reports ; 11(6): 1327-1336, 2018 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-30416050

RESUMEN

Ischemic stroke enhances the proliferation of adult-generated precursor cells that ectopically migrate toward the infarct. Studies have correlated precursor cell proliferation and subsequent adult neurogenesis with enhanced stroke recovery, yet it remains unclear whether stroke can generate new neurons capable of functional integration into the injured cortex. Here, using single and bitransgenic reporter mice, we identify spatial and temporal features of a multilineage cellular response to focal ischemia. We reveal that a small population of stroke-induced immature neurons accumulate within the peri-infarct region of the adult sensorimotor cortex, exhibit voltage-dependent conductances, fire action potentials, express GABAergic markers, and receive sparse GABAergic synaptic inputs. Collectively, these findings reveal that GABAergic neurons arising from the lateral ventricle have the capacity to integrate into the stroke-injured cortex, although their limited number and exiguous synaptic integration may limit their ability to participate in stroke recovery.


Asunto(s)
Envejecimiento/fisiología , Corteza Cerebral/patología , Corteza Cerebral/fisiopatología , Neuronas GABAérgicas/patología , Accidente Cerebrovascular/fisiopatología , Animales , Biomarcadores/metabolismo , Isquemia Encefálica/patología , Linaje de la Célula , Proteínas de Dominio Doblecortina , Proteínas Fluorescentes Verdes/metabolismo , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo , Nestina/metabolismo , Neuropéptidos/metabolismo , Fenotipo , Accidente Cerebrovascular/patología , Sinapsis/metabolismo , Factores de Tiempo
4.
Neuron ; 99(6): 1099-1101, 2018 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-30236277

RESUMEN

In this issue of Neuron, Schäffner et al. (2018) discover multiple effects of the Forkhead Box O (FoxO) transcription factor family on the different stages of adult neurogenesis, including the genesis of dendrites and spines regulated by FoxO-dependent autophagic activity.


Asunto(s)
Autofagia , Factores de Transcripción Forkhead , Adulto , Humanos , Morfogénesis , Neurogénesis , Neuronas
6.
Stem Cell Reports ; 9(6): 1735-1744, 2017 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-29173896

RESUMEN

Epigenetic modifications have emerged as attractive molecular substrates that integrate extrinsic changes into the determination of cell identity. Since stroke-related brain damage releases micro-environmental cues, we examined the role of a signaling-induced epigenetic pathway, an atypical protein kinase C (aPKC)-mediated phosphorylation of CREB-binding protein (CBP), in post-stroke neurovascular remodeling. Using a knockin mouse strain (CbpS436A) where the aPKC-CBP pathway was defective, we show that disruption of the aPKC-CBP pathway in a murine focal ischemic stroke model increases the reprogramming efficiency of ischemia-activated pericytes (i-pericytes) to neural precursors. As a consequence of enhanced cellular reprogramming, CbpS436A mice show an increased transient population of locally derived neural precursors after stroke, while displaying a reduced number of i-pericytes, impaired vascular remodeling, and perturbed motor recovery during the chronic phase of stroke. Together, this study elucidates the role of the aPKC-CBP pathway in modulating neurovascular remodeling and functional recovery following focal ischemic stroke.


Asunto(s)
Proteína de Unión a CREB/genética , Proteína Quinasa C/genética , Accidente Cerebrovascular/genética , Remodelación Vascular/genética , Animales , Isquemia Encefálica/genética , Isquemia Encefálica/patología , Isquemia Encefálica/rehabilitación , Reprogramación Celular/genética , Ratones , Neurogénesis/genética , Pericitos/metabolismo , Pericitos/patología , Fosforilación , Recuperación de la Función/genética , Transducción de Señal/genética , Accidente Cerebrovascular/fisiopatología , Rehabilitación de Accidente Cerebrovascular/métodos
8.
Cereb Cortex ; 25(8): 2102-13, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24554729

RESUMEN

The different secondary subunits of the N-methyl-d-aspartate (NMDA) receptor each convey unique biophysical properties to the receptor complex, and may be key in determining the functional role played by NMDA receptors. In the hippocampus, the GluN2A and GluN2B subunits are particularly abundant; however, their exact roles in synaptic plasticity and behavior remain controversial. Here, we show that mice carrying a deletion for the GluN2A subunit (GluN2A(-/-)) demonstrate a severely compromised NMDA to AMPA receptor current ratio in granule cells from the dentate gyrus (DG), while granule cell morphology is unaltered. This deficit is accompanied by significant impairments in both LTP and LTD in the DG, whereas only minor impairments are observed in the CA1. In accordance with these hippocampal region-specific deficits, GluN2A(-/-) mice show impaired performance on the DG-associated task of spatial pattern separation. In contrast, GluN2A(-/-) mice show no deficit in temporal pattern separation, a process associated with CA1 functioning. Thus, our results establish the GluN2A subunit as a significant contributor to both bidirectional synaptic plasticity and spatial pattern separation in the DG.


Asunto(s)
Giro Dentado/fisiopatología , Potenciación a Largo Plazo/fisiología , Receptores de N-Metil-D-Aspartato/deficiencia , Percepción Espacial/fisiología , Animales , Región CA1 Hipocampal/patología , Región CA1 Hipocampal/fisiopatología , Dendritas/patología , Dendritas/fisiología , Giro Dentado/patología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Pruebas Neuropsicológicas , Técnicas de Placa-Clamp , Terminales Presinápticos/patología , Terminales Presinápticos/fisiología , Receptores AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Transmisión Sináptica/fisiología , Percepción del Tiempo/fisiología , Técnicas de Cultivo de Tejidos
9.
PLoS One ; 9(8): e103155, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25083703

RESUMEN

It is known that NMDA receptors can modulate adult hippocampal neurogenesis, but the contribution of specific regulatory GluN2 subunits has been difficult to determine. Here we demonstrate that mice lacking GluN2A (formerly NR2A) do not show altered cell proliferation or neuronal differentiation, but present significant changes in neuronal morphology in dentate granule cells. Specifically, GluN2A deletion significantly decreased total dendritic length and dendritic complexity in DG neurons located in the inner granular zone. Furthermore, the absence of GluN2A also resulted in a localized increase in spine density in the middle molecular layer, a region innervated by the medial perforant path. Interestingly, alterations in dendritic morphology and spine density were never seen in dentate granule cells located in the outer granular zone, a region that has been hypothesized to contain older, more mature, neurons. These results indicate that although the GluN2A subunit is not critical for the cell proliferation and differentiation stages of the neurogenic process, it does appear to play a role in establishing synaptic and dendritic morphology in maturing dentate granule cells localized in the inner granular zone.


Asunto(s)
Dendritas/metabolismo , Giro Dentado/citología , Giro Dentado/metabolismo , Eliminación de Gen , Células Piramidales/citología , Células Piramidales/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Animales , Diferenciación Celular , Proliferación Celular , Dendritas/patología , Espinas Dendríticas , Inmunohistoquímica , Masculino , Ratones , Ratones Noqueados , Neurogénesis/genética , Subunidades de Proteína , Receptores de N-Metil-D-Aspartato/metabolismo
10.
Hippocampus ; 22(2): 241-54, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21049485

RESUMEN

Fragile X syndrome (FXS) is the most common form of inherited intellectual disability in humans. This X-linked disorder is caused by the transcriptional repression of a single gene, Fmr1. The loss of Fmr1 transcription prevents the production of Fragile X mental retardation protein (FMRP) which in turn disrupts the expression of a variety of key synaptic proteins that appear to be important for intellectual ability. A clear link between synaptic dysfunction and behavioral impairment has been elusive, despite the fact that several animal models of FXS have been generated. Here we report that Fmr1 knockout mice exhibit impaired bidirectional synaptic plasticity in the dentate gyrus (DG) of the hippocampus. These deficits are associated with a novel decrease in functional NMDARs (N-methyl-D-aspartate receptors). In addition, mice lacking the Fmr1 gene show impaired performance in a context discrimination task that normally requires functional NMDARs in the DG. These data indicate that Fmr1 deletion results in significant NMDAR-dependent electrophysiological and behavioral impairments specific to the DG.


Asunto(s)
Giro Dentado/metabolismo , Discriminación en Psicología/fisiología , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Plasticidad Neuronal/fisiología , Receptores de N-Metil-D-Aspartato/metabolismo , Animales , Modelos Animales de Enfermedad , Potenciales Postsinápticos Excitadores/fisiología , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Técnicas de Cultivo de Órganos , Técnicas de Placa-Clamp , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
11.
Neurobiol Aging ; 32(12): 2279-86, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20106549

RESUMEN

Cell proliferation and neurogenesis are diminished in the aging mouse dentate gyrus. However, it is not known whether isolated or social living affects cell genesis and stress levels in old animals. To address this question, aged (17-18 months old) female C57Bl/6 mice were single or group housed, under sedentary or running conditions. We demonstrate that both individual and socially housed aged C57Bl/6 mice have comparable basal cell proliferation levels and demonstrate increased running-induced cell genesis. To assess stress levels in young and aged mice, corticosterone (CORT) was measured at the onset of the active/dark cycle and 4h later. In young mice, no differences in CORT levels were observed as a result of physical activity or housing conditions. However, a significant increase in stress in socially housed, aged sedentary animals was observed at the onset of the dark cycle; CORT returned to basal levels 4h later. Together, these results indicate that voluntary exercise reduces stress in group housed aged animals and enhances hippocampal cell proliferation.


Asunto(s)
Neurogénesis/fisiología , Carrera/fisiología , Carrera/psicología , Estrés Psicológico/psicología , Regulación hacia Arriba/fisiología , Animales , Proliferación Celular , Corticosterona/metabolismo , Giro Dentado/citología , Giro Dentado/metabolismo , Giro Dentado/patología , Femenino , Ratones , Ratones Endogámicos C57BL , Actividad Motora/fisiología , Aislamiento Social/psicología , Estrés Psicológico/metabolismo , Estrés Psicológico/patología
12.
Hippocampus ; 20(2): 305-22, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19437420

RESUMEN

Trans-synaptic cell-adhesion molecules have been implicated in regulating CNS synaptogenesis. Among these, the Neuroligin (NL) family (NLs 1-4) of postsynaptic adhesion proteins has been shown to promote the development and specification of excitatory versus inhibitory synapses. NLs form a heterophilic complex with the presynaptic transmembrane protein Neurexin (NRX). A differential association of NLs with postsynaptic scaffolding proteins and NRX isoforms has been suggested to regulate the ratio of excitatory to inhibitory synapses (E/I ratio). Using transgenic mice, we have tested this hypothesis by overexpressing NL1 in vivo to determine whether the relative levels of these cell adhesion molecules may influence synapse maturation, long-term potentiation (LTP), and/or learning. We found that NL1-overexpressing mice show significant deficits in memory acquisition, but not in memory retrieval. Golgi and electron microscopy analysis revealed changes in synapse morphology indicative of increased maturation of excitatory synapses. In parallel, electrophysiological examination indicated a shift in the synaptic activity toward increased excitation as well as impairment in LTP induction. Our results demonstrate that altered balance in the expression of molecules necessary for synapse specification and development (such as NL1) can lead to defects in memory formation and synaptic plasticity and outline the importance of rigidly controlled synaptic maturation processes.


Asunto(s)
Hipocampo/fisiopatología , Discapacidades para el Aprendizaje/fisiopatología , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Plasticidad Neuronal/fisiología , Sinapsis/fisiología , Transmisión Sináptica/fisiología , Animales , Encéfalo/fisiopatología , Encéfalo/ultraestructura , Moléculas de Adhesión Celular Neuronal , Espinas Dendríticas/fisiología , Espinas Dendríticas/ultraestructura , Hipocampo/ultraestructura , Técnicas In Vitro , Discapacidades para el Aprendizaje/patología , Potenciación a Largo Plazo/fisiología , Potenciales de la Membrana/fisiología , Memoria/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Moléculas de Adhesión de Célula Nerviosa/genética , Inhibición Neural/fisiología , Sinapsis/ultraestructura
13.
Lipids Health Dis ; 8: 5, 2009 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-19239689

RESUMEN

BACKGROUND: Cognitive deficits are a hallmark feature of both Down Syndrome (DS) and Alzheimer's Disease (AD). Extra copies of the genes on chromosome 21 may also play an important role in the accelerated onset of AD in DS individuals. Growing evidence suggests an important function for cholesterol in the pathogenesis of AD, particularly in APP metabolism and production of A beta peptides. The ATP-Binding Cassette-G1 (ABCG1) transporter is located on chromosome 21, and participates in the maintenance of tissue cholesterol homeostasis. RESULTS: To assess the role of ABCG1 in DS-related cognition, we evaluated the cognitive performance of mice selectively over-expressing the ABCG1 gene from its endogenous regulatory signals. Both wild-type and ABCG1 transgenic mice performed equivalently on several behavioral tests, including measures of anxiety, as well as on reference and working memory tasks. No deficits in hippocampal CA1 synaptic plasticity as determined with electrophysiological studies were apparent in mice over-expressing ABCG1. CONCLUSION: These findings indicate that although ABCG1 may play a role in maintaining cellular or tissue cholesterol homeostasis, it is unlikely that excess ABCG1 expression contributes to the cognitive deficits in DS individuals.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Conducta Animal/fisiología , Cognición , Hipocampo/fisiología , Aprendizaje , Lipoproteínas/metabolismo , Plasticidad Neuronal/fisiología , Sinapsis/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 1 , Animales , Ansiedad , Transporte Biológico , Encéfalo/metabolismo , Colesterol/metabolismo , Femenino , Memoria , Ratones , Ratones Transgénicos , Actividad Motora , Especificidad de Órganos
14.
Hippocampus ; 19(10): 889-97, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18958850

RESUMEN

It has been well-established that cell proliferation and neurogenesis in the adult mouse dentate gyrus (DG) can be regulated by voluntary exercise. Recent evidence has suggested that the effects of voluntary exercise can in turn be influenced by environmental factors that regulate the amount of stress an animal is exposed to. In this study, we use bromodeoxyuridine and proliferating cell nuclear antigen immunohistochemistry to show that voluntary exercise produces a significant increase in cell proliferation in the adult mouse DG in both isolated and socially housed mice. This effect on proliferation translates into an increase in neurogenesis and neuronal branching of new neurons in the mice that exercised. Although social condition did not regulate proliferation in young adult mice, an effect of social housing could be observed in mice exposed to acute restraint stress. Surprisingly, only exercising mice housed in isolated conditions showed an increase in cellular proliferation following restraint stress, whereas socially housed, exercising mice, failed to show a significant increase in proliferation. These findings indicate that social housing may increase the effects of any stressful episodes on hippocampal neurogenesis in the mouse DG.


Asunto(s)
Proliferación Celular , Giro Dentado/fisiopatología , Neurogénesis/fisiología , Neuronas/fisiología , Condicionamiento Físico Animal/fisiología , Estrés Psicológico/fisiopatología , Células Madre Adultas/fisiología , Animales , Bromodesoxiuridina , Corticosterona/sangre , Giro Dentado/citología , Proteínas de Dominio Doblecortina , Vivienda para Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Asociadas a Microtúbulos/metabolismo , Movimiento/fisiología , Neuronas/citología , Neuropéptidos/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Restricción Física , Aislamiento Social , Estrés Psicológico/sangre , Volición
15.
Neuromolecular Med ; 10(2): 47-58, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18535925

RESUMEN

Exercise that engages the cardiovascular system has a myriad of effects on the body; however, we usually do not give much consideration to the benefits it may have for our minds. An increasing body of evidence suggests that exercise can have some remarkable effects on the brain. In this article, we will introduce how exercise can impact the capacity for neurons in the brain to communicate with one another. To properly convey this information, we will first briefly introduce the field of synaptic plasticity and then examine how the introduction of exercise to the experimental setting can actually alter the basic properties of synaptic plasticity in the brain. Next, we will examine some of the candidate physiological processes that might underlay these alterations. Finally, we will close by noting that, taken together, this data points toward our brains being dynamic systems that are in a continual state of flux and that physical exercise may help us to maximize the performance of both our body and our minds.


Asunto(s)
Giro Dentado/fisiología , Plasticidad Neuronal/fisiología , Aptitud Física/fisiología , Transmisión Sináptica/fisiología , Animales , Proliferación Celular , Circulación Cerebrovascular/fisiología , Terapia por Ejercicio , Humanos , Factores de Crecimiento Nervioso/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Serotonina/metabolismo
16.
Hippocampus ; 17(12): 1201-8, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17879376

RESUMEN

We examined synaptic plasticity in the dentate gyrus (DG) of the hippocampus in vitro in juvenile C57Bl6 mice (28-40 days of age), housed in control conditions with minimal enrichment (Controls) or with access to an exercise wheel (Runners). LTP expression was significantly greater in slices from Runners than in those from Controls, but could be blocked by APV in both groups. LTP was significantly reduced by NR2B subunit antagonists in both groups. NVP-AAM077, an antagonist with a higher preference for NR2A subunits over NR2B subunits, blocked LTP in slices from Runners and produced a slight depression in Control animals. LTD in the DG was also blocked by APV, but not by either of the NR2B specific antagonists. Strikingly, NVP-AAM077 prevented LTD in Runners, but not in Control animals, suggesting an increased involvement of NR2A subunits in LTD in animals that exercise. NVP-AAM077 did not block LTD in NR2A Knock Out (KO) animals that exercised, as expected. In an attempt to discern whether NMDA receptors located at extrasynaptic sites could play a role in the induction of LTD, DL-TBOA was used to block excitatory amino acid transport and increase extracellular glutamate levels. Under these conditions, LTD was not blocked by the co-application of a specific NR2B subunit antagonist in either group, but NVP-AAM077 again blocked LTD selectively in Runners. These results indicate that NR2A and NR2B subunits play a significant role in LTP in the DG, and that exercise can significantly alter the contribution of NMDA NR2A subunits to LTD.


Asunto(s)
Giro Dentado/citología , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Condicionamiento Físico Animal , Receptores de N-Metil-D-Aspartato/fisiología , Animales , Ácido Aspártico/farmacología , Conducta Animal , Giro Dentado/fisiología , Relación Dosis-Respuesta en la Radiación , Interacciones Farmacológicas , Estimulación Eléctrica/métodos , Fármacos actuantes sobre Aminoácidos Excitadores/farmacología , Técnicas In Vitro , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Plasticidad Neuronal/efectos de los fármacos , Plasticidad Neuronal/efectos de la radiación , Piperidinas/farmacología , Quinoxalinas/farmacología , Receptores de N-Metil-D-Aspartato/deficiencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...