Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc SPIE Int Soc Opt Eng ; 97832016 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-28615795

RESUMEN

A novel amorphous selenium (a-Se) direct detector with CMOS readout has been designed, and relative detector performance investigated. The detector features include a 25µm pixel pitch, and 1000µm thick a-Se layer operating at 10V/µm bias field. A simulated detector DQE was determined, and used in comparative calculations of the Relative Object Detectability (ROD) family of prewhitening matched-filter (PWMF) observer and non-prewhitening matched filter (NPWMF) observer model metrics to gauge a-Se detector performance against existing high resolution micro-angiographic fluoroscopic (MAF) detectors and a standard flat panel detector (FPD). The PWMF-ROD or ROD metric compares two x-ray imaging detectors in their relative abilities in imaging a given object by taking the integral over spatial frequencies of the Fourier transform of the detector DQE weighted by an object function, divided by the comparable integral for a different detector. The generalized-ROD (G-ROD) metric incorporates clinically relevant parameters (focal-spot size, magnification, and scatter) to show the degradation in imaging performance for detectors that are part of an imaging chain. Preliminary ROD calculations using simulated spheres as the object predicted superior imaging performance by the a-Se detector as compared to existing detectors. New PWMF-G-ROD and NPWMF-G-ROD results still indicate better performance by the a-Se detector in an imaging chain over all sphere sizes for various focal spot sizes and magnifications, although a-Se performance advantages were degraded by focal spot blurring. Nevertheless, the a-Se technology has great potential to provide breakthrough abilities such as visualization of fine details including of neuro-vascular perforator vessels and of small vascular devices.

2.
Sci Rep ; 3: 1546, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23529071

RESUMEN

Silicon nanowires can enhance broadband optical absorption and reduce radial carrier collection distances in solar cell devices. Arrays of disordered nanowires grown by vapor-liquid-solid method are attractive because they can be grown on low-cost substrates such as glass, and are large area compatible. Here, we experimentally demonstrate that an array of disordered silicon nanowires surrounded by a thin transparent conductive oxide has both low diffuse and specular reflection with total values as low as < 4% over a broad wavelength range of 400 nm < λ < 650 nm. These anti-reflective properties together with enhanced infrared absorption in the core-shell nanowire facilitates enhancement in external quantum efficiency using two different active shell materials: amorphous silicon and nanocrystalline silicon. As a result, the core-shell nanowire device exhibits a short-circuit current enhancement of 15% with an amorphous Si shell and 26% with a nanocrystalline Si shell compared to their corresponding planar devices.


Asunto(s)
Suministros de Energía Eléctrica , Nanocables/química , Silicio/química , Energía Solar , Aluminio/química , Microscopía Electrónica , Nanocables/ultraestructura , Luz Solar , Óxido de Zinc/química
3.
Phys Med Biol ; 57(24): 8405-25, 2012 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-23202244

RESUMEN

In contrast-enhanced mammography (CEM), the dual-energy dual-exposure technique, which can leverage existing conventional mammography infrastructure, relies on acquiring the low- and high-energy images using two separate exposures. The finite time between image acquisition leads to motion artifacts in the combined image. Motion artifacts can lead to greater anatomical noise in the combined image due to increased mismatch of the background tissue in the images to be combined, however the impact has not yet been quantified. In this study we investigate a method to include motion artifacts in the dual-energy noise and performance analysis. The motion artifacts are included via an extended cascaded systems model. To validate the model, noise power spectra of a previous dual-energy clinical study are compared to that of the model. The ideal observer detectability is used to quantify the effect of motion artifacts on tumor detectability. It was found that the detectability can be significantly degraded when motion is present (e.g., detectability of 2.5 mm radius tumor decreased by approximately a factor of 2 for translation motion on the order of 1000 µm). The method presented may be used for a more comprehensive theoretical noise and performance analysis and fairer theoretical performance comparison between dual-exposure techniques, where motion artifacts are present, and single-exposure techniques, where low- and high-energy images are acquired simultaneously and motion artifacts are absent.


Asunto(s)
Artefactos , Medios de Contraste , Mamografía/métodos , Movimiento , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/fisiopatología , Humanos , Relación Señal-Ruido
4.
Phys Med Biol ; 56(18): 5903-23, 2011 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-21852727

RESUMEN

The accumulation of injected contrast agents allows the image enhancement of lesions through the use of contrast-enhanced mammography. In this technique, the combination of two acquired images is used to create an enhanced image. There exist several methods to acquire the images to be combined, which include dual energy subtraction using a single detection layer that suffers from motion artifacts due to patient motion between image acquisition. To mitigate motion artifacts, a detector composed of two layers may be used to simultaneously acquire the low and high energy images. In this work, we evaluate both of these methods using amorphous selenium as the detection material to find the system parameters (tube voltage, filtration, photoconductor thickness and relative intensity ratio) leading to the optimal performance. We then compare the performance of the two detectors under the variation of contrast agent concentration, tumor size and dose. The detectability was found to be most comparable at the lower end of the evaluated factors. The single-layer detector not only led to better contrast, due to its greater spectral separation capabilities, but also had lower quantum noise. The single-layer detector was found to have a greater detectability by a factor of 2.4 for a 2.5 mm radius tumor having a contrast agent concentration of 1.5 mg ml(-1) in a 4.5 cm thick 50% glandular breast. The inclusion of motion artifacts in the comparison is part of ongoing research efforts.


Asunto(s)
Mamografía/instrumentación , Neoplasias/diagnóstico por imagen , Intensificación de Imagen Radiográfica/instrumentación , Selenio/química , Artefactos , Medios de Contraste , Relación Dosis-Respuesta en la Radiación , Diseño de Equipo , Femenino , Filtración/instrumentación , Filtración/métodos , Humanos , Mamografía/métodos , Movimiento (Física) , Neoplasias/patología , Intensificación de Imagen Radiográfica/métodos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
5.
Nano Lett ; 10(10): 4093-8, 2010 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-20815406

RESUMEN

The optical absorption in a nanowire heterostructure consisting of a crystalline silicon core surrounded by a conformal shell of amorphous silicon is studied. We show that they exhibit extremely high absorption of 95% at short wavelengths (λ < 550 nm) and a concomitant very low absorption of down to less than 2% at long wavelengths (λ > 780 nm). These results indicate that our nanowires do not have optically active energy levels in the band gap. The absorption edge of silicon nanowires arrays is observed to shift to longer wavelengths as a function of the overall nanowire diameter. The near-infrared absorption of the nanowire array is significantly better than that of thin film amorphous silicon. These properties indicate potential use in large area optoelectronic and photovoltaic applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...