Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(26): 34135-34140, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38900936

RESUMEN

Hydrogen peroxide (H2O2) is a highly effective decontaminant against chemical warfare agents (CWAs) when present both in a liquid and as a solid powder. For the latter, this can be in the form of H2O2 being complexed to a polymer, such as polyvinylpyrrolidone (PVP). While a H2O2-PVP complex is indeed effective at decontaminating CWAs, it is vulnerable to environmental conditions such as high relative humidities (RH), which can dissociate the H2O2 from the complex before it is given the opportunity to react with CWAs. In this paper, we demonstrate that the cross-linked version of PVP forms a highly stable complex with H2O2, which can withstand both high (40 °C) and low (-20 °C) temperatures as well as maintain stability at high RH up to 90% over several days. Collectively, this lays the framework for processing the H2O2-PVP complex in a variety of form factors that can maintain efficacy under a wide range of real-world environmental conditions.

3.
ACS Appl Mater Interfaces ; 13(8): 10500-10512, 2021 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-33606491

RESUMEN

A strategy is developed to enhance the barrier protection of polyethylene oxide (PEO)-metal-organic framework (MOF) composite films against chemical warfare agent simulants. To achieve enhanced protection, an impermeable high-aspect-ratio filler in the form of Laponite RD (LRD) clay platelets was incorporated into a composite PEO film containing MOF UiO-66-NH2. The inclusion of the platelets aids in mitigating permeation of inert hydrocarbons (octane) and toxic chemicals (2-chloroethyl ethyl sulfide, 2-CEES) of dimensions/chemistry similar to prominent vesicant threats while still maintaining high water vapor transport rates (WVTR). By utilizing small-angle neutron scattering, small-angle X-ray scattering, and wide-angle X-ray scattering, the LRD platelet alignment of the films was determined, and the structure of the films was correlated with performance as a barrier material. Performance of the membranes against toxic chemical threats was assessed using permeation testing of octane and 2-CEES, a common simulant for the vesicant mustard gas, and breathability of the membranes was assessed using WVTR measurements. To assess their robustness, chemical exposure (in situ diffuse reflectance infrared Fourier transform spectroscopy) and mechanical (tensile strength) measurements were also performed. It was demonstrated that the barrier performance of the film upon inclusion of the LRD platelets exceeds that of other MOF-polymer composites found in the literature and that this approach establishes a new path for improving permselective materials for chemical protection applications.

4.
J Phys Chem Lett ; 12(2): 892-899, 2021 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-33434023

RESUMEN

Thermodynamic and kinetic properties of molecular adsorption and transport in metal-organic frameworks (MOFs) are crucially important for many applications, including gas adsorption, filtration, and remediation of harmful chemicals. Using the in situ 1H nuclear magnetic resonance (NMR) isotherm technique, we measured macroscopic thermodynamic and kinetic properties such as isotherms and rates of mass transfer while simultaneously obtaining microscopic information revealed by adsorbed molecules via NMR. Upon investigating isopropyl alcohol adsorption in MOF UiO-66 by in situ NMR, we obtained separate isotherms for molecules adsorbed at distinct environments exhibiting distinct NMR characteristics. A mechanistic view of the adsorption process is obtained by correlating such resolved isotherms with the cage structure effect on the nucleus-independent chemical shift, molecular dynamics such as the crowding effect at high loading levels, and the loading level dependence of the mass transfer rate as measured by NMR and elucidated by classical Monte Carlo simulations.

5.
Commun Chem ; 4(1): 33, 2021 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36697596

RESUMEN

Bis(2-chloroethyl) sulfide or sulfur mustard (HD) is one of the highest-tonnage chemical warfare agents and one that is highly persistent in the environment. For decontamination, selective oxidation of HD to the substantially less toxic sulfoxide is crucial. We report here a solvent-free, solid, robust catalyst comprising hydrophobic salts of tribromide and nitrate, copper(II) nitrate hydrate, and a solid acid (NafionTM) for selective sulfoxidation using only ambient air at room temperature. This system rapidly removes HD as a neat liquid or a vapor. The mechanisms of these aerobic decontamination reactions are complex, and studies confirm reversible formation of a key intermediate, the bromosulfonium ion, and the role of Cu(II). The latter increases the rate four-fold by increasing the equilibrium concentration of bromosulfonium during turnover. Cu(II) also provides a colorimetric detection capability. Without HD, the solid is green, and with HD, it is brown. Bromine K-edge XANES and EXAFS studies confirm regeneration of tribromide under catalytic conditions. Diffuse reflectance infrared Fourier transform spectroscopy shows absorption of HD vapor and selective conversion to the desired sulfoxide, HDO, at the gas-solid interface.

6.
J Occup Environ Hyg ; 17(10): 480-494, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32776823

RESUMEN

In the event of a chemical, biological, radiological, or nuclear (CBRN) hazard release, emergency responders rely on respiratory protection to prevent inhalation of these hazards. The National Institute for Occupational Safety and Health's (NIOSH) CBRN Statement of Standard calls for CBRN respirator canisters to be challenged with 11 different chemical test representative agents (TRAs) during certification testing, which represent hazards from 7 distinct Chemical Families; these 11 TRAs were identified during the original 2001 CBRN hazard assessment. CBRN hazards are constantly evolving in type, intent of use, and ways of dissemination. Thus, new and emerging hazards must be identified to ensure CBRN canisters continue to provide protection to emergency responders against all hazards that would most likely be used in an intentional or unintentional event. The objectives are to: (1) update the CBRN list of hazards to ensure NIOSH-approved CBRN canisters continue to provide adequate protection capabilities from newly emerging chemical and radiological hazards and (2) identify the need to update NIOSH TRAs to ensure testing conditions represent relevant hazards. These objectives were accomplished by reviewing recent hazard assessments to identify a list of chemical and radiological respiratory hazards, evaluate chemical/physical properties and filtration behavior for these hazards, group the hazards based on NIOSH's current Chemical Families, and finally compare the hazards to the current TRAs based on anticipated filtration behavior, among other criteria. Upon completion of the evaluation process, 237 hazards were identified and compared to NIOSH's current CBRN TRAs. Of these 237 hazards, 203 were able to be categorized into one of NIOSH's current seven Chemical Families. Five were identified for further evaluation. Based on reviewing key chemical/physical properties of each hazard, NIOSH's current 11 TRAs remain representative of the identified respiratory CBRN hazards to emergency responders and should continue to be used during NIOSH certification testing. Thus, NIOSH's CBRN Statement of Standard remains unchanged. The process developed standardizes a methodology for future hazard evaluations.


Asunto(s)
Filtros de Aire/normas , Contaminantes Radiactivos del Aire/química , Sustancias Peligrosas/química , Exposición por Inhalación/prevención & control , Dispositivos de Protección Respiratoria/normas , Adsorción , Ensayo de Materiales/métodos , National Institute for Occupational Safety and Health, U.S. , Estados Unidos
7.
ACS Appl Mater Interfaces ; 12(13): 14641-14661, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-31994872

RESUMEN

The threat of chemical warfare agents (CWAs), assured by their ease of synthesis and effectiveness as a terrorizing weapon, will persist long after the once-tremendous stockpiles in the U.S. and elsewhere are finally destroyed. As such, soldier and civilian protection, battlefield decontamination, and environmental remediation from CWAs remain top national security priorities. New chemical approaches for the fast and complete destruction of CWAs have been an active field of research for many decades, and new technologies have generated immense interest. In particular, our research team and others have shown metal-organic frameworks (MOFs) and polyoxometalates (POMs) to be active for sequestering CWAs and even catalyzing the rapid hydrolysis of agents. In this Forum Article, we highlight recent advancements made in the understanding and evaluation of POMs and Zr-based MOFs as CWA decontamination materials. Specifically, our aim is to bridge the gap between controlled, solution-phase laboratory studies and real-world or battlefield-like conditions by examining agent-material interactions at the gas-solid interface utilizing a multimodal experimental and computational approach. Herein, we report our progress in addressing the following research goals: (1) elucidating molecular-level mechanisms of the adsorption, diffusion, and reaction of CWA and CWA simulants within a series of Zr-based MOFs, such as UiO-66, MOF-808, and NU-1000, and POMs, including Cs8Nb6O19 and (Et2NH2)8[(α-PW11O39Zr(µ-OH)(H2O))2]·7H2O, (2) probing the effects that common ambient gases, such as CO2, SO2, and NO2, have on the efficacy of the MOF and POM materials for CWA destruction, and (3) using CWA simulant results to develop hypotheses for live agent chemistry. Key hypotheses are then tested with targeted live agent studies. Overall, our collaborative effort has provided insight into the fundamental aspects of agent-material interactions and revealed strategies for new catalyst development.

8.
ACS Appl Mater Interfaces ; 11(23): 21109-21116, 2019 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-31117457

RESUMEN

Zirconium-based metal organic frameworks (Zr-MOFs) are highly chemically and thermally stable and have been of particular interest as reactive sorbents for chemical warfare agent (CWA) removal due to their fast and selective reactivity toward CWAs reported in buffer solutions. However, we find that decontamination of neat CWAs directly on Zr-MOFs, UiO-66, UiO-66-NH2, and NU-1000 is rather slow, and the reactivity trend and products generated are very different from those in solution. Furthermore, we show that their decontamination rates are affected by the amount of moisture present in the MOFs. Although the effects are minor for UiO-66-NH2 and NU-1000, the hydrolytic activity of UiO-66 toward CWAs dramatically improves as the amount of water present increases. Specifically, the initial hydrolysis rate of methyl paraoxon by UiO-66 increases from 6 µmol/d with 0 wt % water loading to 140 µmol/d with 400 wt % water loading. The results reported here suggest that decontamination of CWAs by Zr-MOFs in solid phase behaves very differently than solution decontamination. Additionally, we present for the first time a digestion method for analyzing and quantifying solid-phase decontamination, which is a daunting challenge itself due to the lack of a convenient analytical method.

9.
ACS Appl Mater Interfaces ; 11(19): 17931-17939, 2019 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-30945841

RESUMEN

A facile method for the formation of mesoporosity within nonporous zirconium hydr(oxides) (ZrO2/Zr(OH)4) is presented and their detoxifying capabilities against dimethyl chlorophosphate (DMCP) are investigated. Nanoaggregates of ZrO2/Zr(OH)4 appear to be deposited on larger thin flakes of the same material. H2O2 is used to induce surface oxygen vacancies of synthesized ZrO2/Zr(OH)4 and, as a consequence, mesopores with an average diameter of 3.1 nm were formed. A surface area of H2O2-treated ZrO2/Zr(OH)4 was increased by an order of magnitude and shows enhanced reactivity toward DMCP. DRIFTS spectroscopy is employed to assess the reactivity differences between the H2O2-treated and untreated ZrO2/Zr(OH)4. Peaks at 1175 and 1144 cm-1 indicate the presence of asymmetric stretching of the O-P-O moiety within dimethyl phosphonate (DMHP), a decomposition product from DMCP, and a zirconium-bound methoxy group, respectively. It is suggested that the decomposition of DMCP proceeds through the consumption of bridged hydroxyl groups (b-OH) for both the untreated and H2O2-treated samples, as well as an additional hydrolytic decomposition pathway for the H2O2-treated sample.

10.
ACS Appl Mater Interfaces ; 10(22): 18771-18777, 2018 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-29766717

RESUMEN

Sulfur mustard is one of the most toxic chemical warfare agents worldwide. We report the use of 4,4-difluoro-4-bora-3a,4a-diaza- s-indacene (BODIPY) photosensitizers as a fast and effective sulfur mustard decontaminant and their incorporation into various polymer coatings and fabrics, including army combat uniform. These BODIPY-embedded materials are capable of generating singlet oxygen under visible light irradiation and effectively detoxifying sulfur mustard by converting it into nontoxic sulfoxides as the major products. The rate of decontamination is found to be affected by the photosensitizer structure and concentration as well as the excitation wavelength. The most effective BODIPY-embedded self-decontamination material observed in this study shows a half-life of only 0.8 min. In comparison to the current methods, which use activated carbon as the adsorbent layer, these self-detoxifying coatings and fabrics provide constant destruction of and real-time protection against sulfur mustard.

11.
Chemistry ; 23(63): 15913-15916, 2017 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-28949042

RESUMEN

For the first time, an increasing number of defects were introduced to the metal-organic framework UiO-66-NH2 in an attempt to understand the structure-activity trade-offs associated with toxic chemical removal. It was found that an optimum exists with moderate defects for toxic chemicals that react with the linker, whereas those that require hydrolysis at the secondary building unit performed better when more defects were introduced. The insights obtained through this work highlight the ability to dial-in appropriate material formulations, even within the same parent metal-organic framework, allowing for trade-offs between reaction efficiency and mass transfer.

12.
ACS Nano ; 10(2): 2880-6, 2016 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-26853633

RESUMEN

Copper sulfide (Cu(2-x)S) nanocrystals with nonstoichiometric composition exhibit plasmon resonance in the near-infrared region. Compositional changes and varying electron density markedly affect the position and intensity of the plasmon resonance. We report a photochemically induced phenomenon of modulating the plasmon resonance in a controlled fashion. As photogenerated reduced methyl viologen radicals transfer electrons to Cu(2-x)S in inert solutions, we observe a decrease in localized surface plasmon resonance (LSPR) absorbance at 1160 nm. Upon exposure to air, the plasmon resonance band recovers as stored electrons are scavenged away by oxygen. This cycle of electron charge and discharge of Cu(2-x)S nanocrystals is reversible and can be repeated through photoirradiation in N2 saturated solution followed by exposure of the suspension to air. The spectroscopic studies that provide mechanistic insights into the reversible charging and discharging of plasmonic Cu(2-x)S are discussed.

13.
J Phys Chem Lett ; 6(24): 4923-6, 2015 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-26722703
14.
ACS Appl Mater Interfaces ; 6(13): 10638-48, 2014 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-24937354

RESUMEN

Using alizarin and titanium isopropoxide, we have succeeded in preparing a hybrid form of nanostructured graphene-TiO2 following a bottom-up synthetic approach. This novel graphene-based composite offers a practical alternative to synthesizing photocatalytically active materials with maximized graphene-TiO2 interface. The molecular precursor alizarin was chosen because it efficiently binds to TiO2 through the hydroxyl groups and already possesses the graphene building block through its anthracene basis. XPS and Raman spectroscopy proved that the calcined material contained majority sp(2)-hybridized carbon that formed graphene-like clusters. XRD data showed the integrated structures maintained their anatase crystallography, therefore preserving the material's properties without going through phase transitions to rutile. The enhanced graphene and TiO2 interface was confirmed using DFT computational techniques. The photocatalytic activity of the graphene-TiO2 materials was demonstrated through degradation of methylene blue.

15.
ACS Nano ; 8(7): 7272-8, 2014 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-24893206

RESUMEN

Smart material nanoassemblies that can simultaneously sense and shoot low-level contaminants from air and water are important for overcoming the threat of hazardous chemicals. Graphene oxide (GO) sheets deposited on mesoscopic TiO2 films that underpin the deposition of Ag nanoparticles with UV irradiation provide the foundation for the design of a smart material. The Ag particle size is readily controlled through precursor concentration and UV irradiation time. These semiconductor­graphene oxide­metal (SGM) films are SERS-active and hence capable of sensing aromatic contaminants such as 4-nitrobenzenethiol (4-NBT) in nanomolar range. Increased local concentration of organic molecules achieved through interaction with 2-D carbon support (GO) facilitates low-level detection of contaminants. Upon UV irradiation of 4-NBT-loaded SGM film, one can induce photocatalytic transformations. Thus, each component of the SGM film plays a pivotal role in aiding the detection and degradation of a contaminant dispersed in aqueous solutions. The advantage of using SGM films as multipurpose "detect and destroy" systems for nitroaromatic molecules is discussed.

16.
J Phys Chem C Nanomater Interfaces ; 113(31): 13906-13917, 2009 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-20161144

RESUMEN

Adsorption equilibria and NMR experiments were performed to study the adsorption and interactions of ammonia with metal-organic framework (MOF) HKUST-1, or Cu(3)(BTC)(2) (BTC = 1,3,5-benzenetricarboxylate). Ammonia capacities determined from chemical breakthrough measurements show significantly higher uptake capacities than from adsorption alone, suggesting a stronger interaction involving a potential reaction with the Cu(3)(BTC)(2) framework. Indeed, (1)H MAS NMR reveals that a major disruption of the relatively simple spectrum of Cu(3)(BTC)(2) occurs to generate a composite spectrum consistent with Cu(OH)(2) and (NH(4))(3)BTC species under humid conditions-the anticipated products of a copper(II) carboxylate reacted with limited ammonia. These species are not detected under dry conditions; however, reaction stoichiometry combined with XRD results suggests the partial formation of an indeterminate diammine copper (II) complex with some residual Cu(3)(BTC)(2) structure retained. Cu(II)-induced paramagnetic shifts exhibited by various species in (1)H and (13)C MAS NMR spectra are consistent with model compounds and previous literature. Although results show extensive ammonia capacity of Cu(3)(BTC)(2), much of the capacity is due to reaction with the structure itself, causing a permanent loss in porosity and structural integrity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...