Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Magn Reson Imaging ; 87: 113-118, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35007693

RESUMEN

PURPOSE: To quantify the heterogeneity of viscoelastic tissue properties in prostatectomy specimens from men with prostate cancer (PC) using MR elastography (MRE) with histopathology as reference. METHODS: Twelve fresh prostatectomy specimens were examined in a preclinical 9.4T MRI scanner. Maps of the complex shear modulus (|G*| in kPa) with its real and imaginary part (G' and G" in kPa) were calculated at 500 Hz. Prostates were divided into 12 segments for segment-wise measurement of viscoelastic properties and histopathology. Coefficients of variation (CVs in %) were calculated for quantification of heterogeneity. RESULTS: Group-averaged values of cancerous vs. benign segments were significantly increased: |G*| of 12.13 kPa vs. 6.14 kPa, G' of 10.84 kPa vs. 5.44 kPa and G" of 5.45 kPa vs. 2.92 kPa, all p < 0.001. In contrast, CVs were significantly increased for benign segments: 23.59% vs. 26.32% (p = 0.014) for |G*|, 27.05% vs. 37.84% (p < 0.003) for G', and 36.51% vs. 50.37% (p = 0.008) for G". DISCUSSION: PC is characterized by a stiff yet homogeneous biomechanical signature, which may be due to the unique nondestructive growth pattern of PC with intervening stroma, providing a rigid scaffold in the affected area. In turn, increased heterogeneity in benign prostate segments may be attributable to the presence of different prostate zones with involvement by specific nonmalignant pathology.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Neoplasias de la Próstata , Humanos , Imagen por Resonancia Magnética , Masculino , Próstata/diagnóstico por imagen , Próstata/patología , Próstata/cirugía , Prostatectomía , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/cirugía
2.
Magn Reson Med ; 84(1): 396-404, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-31821615

RESUMEN

PURPOSE: Despite its success in the assessment of prostate cancer (PCa), in vivo multiparametric MRI has limitations such as interobserver variability and low specificity. Several MRI methods, among them MR elastography, are currently being discussed as candidates for supplementing conventional multiparametric MRI. This study aims to investigate the detection of PCa in fresh ex vivo human prostatectomy specimens using MR elastography. METHODS: Fourteen fresh prostate specimens from men with clinically significant PCa without formalin fixation or prior radiation therapy were examined by MR elastography at 500 Hz immediately after radical prostatectomy in a 9.4T preclinical scanner. Specimens were divided into 12 segments for both calculation of storage modulus (G' in kilopascals) and pathology (Gleason score) as reference standard. Sensitivity, specificity, and area under the receiver operating characteristic curve were calculated to assess PCa detection. RESULTS: The mean G' and SD were as follows: all segments, 8.74 ± 5.26 kPa; healthy segments, 5.44 ± 4.40 kPa; and cancerous segments, 10.84 ± 4.65 kPa. The difference between healthy and cancerous segments was significant with P ≤ .001. Diagnostic performance assessed with the Youden index was as follows: sensitivity, 69%; specificity, 79%; area under the curve, 0.81; and cutoff, 10.67 kPa. CONCLUSION: Our results suggest that prostate MR elastography has the potential to improve diagnostic performance of multiparametric MRI, especially regarding its 2 major limitations: interobserver variability and low specificity. Particularly the high value for specificity in PCa detection is a stimulating result and encourages further investigation of this method.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Neoplasias de la Próstata , Humanos , Imagen por Resonancia Magnética , Masculino , Prostatectomía , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/cirugía , Sensibilidad y Especificidad
3.
J Synchrotron Radiat ; 25(Pt 4): 1022-1029, 2018 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-29979163

RESUMEN

X-ray free-electron lasers in the oscillator configuration (XFELO) are future fully coherent hard X-rays sources with ultrahigh spectral purity. X-ray beams circulate in an XFELO optical cavity comprising diamond single crystals. They function as high-reflectance (close to 100%), narrowband (∼10 meV) Bragg backscattering mirrors. The average power density of the X-ray beams in the XFELO cavity is predicted to be as high as ∼10 kW mm-2. Therefore, XFELO feasibility relies on the ability of diamond crystals to withstand such a high radiation load and preserve their high reflectivity. Here the endurance of diamond crystals to irradiation with multi-kW mm-2 power density X-ray beams is studied. It is shown that the high Bragg reflectivity of the diamond crystals is preserved after the irradiation, provided it is performed at ∼1 × 10-8 Torr high-vacuum conditions. Irradiation under 4 × 10-6 Torr results in a ∼1 meV shift of the Bragg peak, which corresponds to a relative lattice distortion of 4 × 10-8, while the high Bragg reflectivity stays intact.

4.
J Mech Behav Biomed Mater ; 84: 135-144, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29775815

RESUMEN

The mechanical properties of tissue are sensitive to pathological changes, which is the basis for using dynamic elastography as a diagnostic tool. The purpose of this study is a concurrent cross-modality comparison of two dynamic elastography methods, Magnetic Resonance Elastography (MRE) and Scanning Laser Doppler Vibrometry (SLDV) using a single vibration source method. Cylindrical soft tissue mimicking specimens of Plastisol and Ecoflex are stimulated with 60, 100, 150, and 250 Hz sinusoidal vibration during imaging. Specimen stiffness was also varied by adjusting the softener amount in each material. Displacement fields acquired using the two methods show similarity in wave front geometry at all frequencies. Magnetic Resonance Elastography (MRE) with 3D inversion and Optical Elastography (OE) with averaged 1D curve fitting were used to derive complex shear moduli from each imaging modality. MRE and OE shear storage modulus (n = 3) results were closest at 150 Hz with Plastisol G' (MRE) = 9.03 ±â€¯0.43 kPa and G' (OE) = 8.46 ±â€¯0.14 kPa while Ecoflex was G' (MRE) = 15.71 ±â€¯0.95 kPa and G' (OE) = 13.71 ±â€¯0.03 kPa. Correlation between MRE and OE complex shear moduli related by all 36 coupled scans performed during this study yield a Pearson's correlation of ρ = 0.88 with p < 0.001 for G' (storage modulus) and ρ = 0.85 with p < 0.001 for G" (loss modulus). The simultaneous imaging approach yields stiffness values within the same range and acceptable error margins for MRE and OE.


Asunto(s)
Diagnóstico por Imagen de Elasticidad/instrumentación , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética/instrumentación , Imagen Óptica/instrumentación , Resistencia al Corte , Vibración , Rayos Láser , Fantasmas de Imagen
5.
J Eng Sci Med Diagn Ther ; 1(3): 0310071-310078, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35832533

RESUMEN

Dynamic elastography methods attempt to quantitatively map soft tissue viscoelastic properties. Application to the fingertip, relevant to medical diagnostics and to improving tactile interfaces, is a novel and challenging application, given the small target size. In this feasibility study, an annular actuator placed on the surface of the fingertip and driven harmonically at multiple frequencies sequentially creates geometrically focused surface (GFS) waves. These surface wave propagation patterns are measured using scanning laser Doppler vibrometry. Reconstruction (the inverse problem) is performed in order to estimate fingertip soft tissue viscoelastic properties. The study identifies limitations of an analytical approach and introduces an optimization approach that utilizes a finite element (FE) model. Measurement at multiple frequencies reveals limitations of an assumption of homogeneity of material properties. Identified shear viscoelastic properties increase significantly as frequency increases and the depth of penetration of the surface wave is reduced, indicating that the fingertip is significantly stiffer near its surface.

6.
Phys Med Biol ; 62(19): 7682-7693, 2017 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-28777745

RESUMEN

The feasibility of sample interval modulation (SLIM) magnetic resonance elastography (MRE) for the in vivo mouse brain is assessed, and an alternative SLIM-MRE encoding method is introduced. In SLIM-MRE, the phase accumulation for each motion direction is encoded simultaneously by varying either the start time of the motion encoding gradient (MEG), SLIM-phase constant (SLIM-PC), or the initial phase of the MEG, SLIM-phase varying (SLIM-PV). SLIM-PC provides gradient moment nulling, but the mutual gradient shift necessitates increased echo time (TE). SLIM-PV requires no increased TE, but exhibits non-uniform flow compensation. Comparison was to conventional MRE using six C57BL/6 mice. For SLIM-PC, the Spearman's rank correlation to conventional MRE for the shear storage and loss modulus images were 80% and 76%, respectively, and likewise for SLIM-PV, 73% and 69%, respectively. The results of the Wilcoxon rank sum test showed that there were no statistically significant differences between the spatially averaged shear moduli derived from conventional-MRE, SLIM-PC, and SLIM-PV acquisitions. Both SLIM approaches were comparable to conventional MRE scans with Spearman's rank correlation of 69%-80% and with 3 times reduction in scan time. The SLIM-PC method had the best correlation, and SLIM-PV may be a useful tool in experimental conditions, where both measurement time and T2 relaxation is critical.


Asunto(s)
Encéfalo/diagnóstico por imagen , Diagnóstico por Imagen de Elasticidad/métodos , Interpretación de Imagen Asistida por Computador/métodos , Imagenología Tridimensional/métodos , Imagen por Resonancia Magnética/métodos , Animales , Femenino , Ratones , Ratones Endogámicos C57BL , Movimiento
7.
Magn Reson Med ; 77(1): 273-284, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-26787007

RESUMEN

PURPOSE: To introduce a newly developed technique (DTI-MRE) for the simultaneous acquisition of diffusion tensor imaging (DTI) and 3D-vector field magnetic resonance elastography (MRE) data, and to demonstrate its feasibility when applied in vivo to the mouse brain. METHODS: In DTI-MRE, simultaneous encoding is achieved by using a series of diffusion/motion-sensitizing gradients (dMSGs) with specific timing and directions. By adjusting the duration of the dMSGs with the diffusion time and with the mechanical vibration frequency, the shear wave motion and diffusion are encoded into the MR phase and MR magnitude signals, respectively. The dMSGs are applied in a noncollinear and noncoplanar manner that optimizes the capture of both the DTI signal attenuation and the three-dimensional MRE displacements. In this work, the feasibility of the DTI-MRE technique was demonstrated on in vivo mouse brains (n=3) using a 9.4T animal MRI scanner. The DTI-MRE derived parameters (MD, mean diffusivity; FA, fractional anisotropy; MRE displacement fields; and shear modulus |G|) were compared with those acquired using conventional, separate MRE and diffusion methods. RESULTS: The averaged (MD, FA, and |G|) values for three mice are (0.580 ± 0.050 µm2 /ms, 0.43 ± 0.02, and 4.80 ± 0.06 kPa) and (0.583 ± 0.035 µm2 /ms, 0.46 ± 0.02, and 4.91 ± 0.19 kPa) for DTI-MRE, and conventional DTI and 3D-vector field MRE measurements, respectively. All derived parameters (MD, FA, |G|, and displacement) obtained using the combined DTI-MRE method and conventional methods were significantly correlated with P < 0.05. CONCLUSION: Simultaneous acquisition of DTI and 3D-vector field MRE is feasible in vivo and reduces the scan time by up to 50% compared with conventional, separate acquisitions, while providing an immediate co-registration of maps of diffusion properties and stiffness. Magn Reson Med 77:273-284, 2017. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Imagen de Difusión Tensora/métodos , Diagnóstico por Imagen de Elasticidad/métodos , Imagen por Resonancia Magnética/métodos , Algoritmos , Animales , Anisotropía , Encéfalo , Imagen de Difusión Tensora/instrumentación , Módulo de Elasticidad , Diagnóstico por Imagen de Elasticidad/instrumentación , Diseño de Equipo , Femenino , Imagen por Resonancia Magnética/instrumentación , Ratones , Ratones Endogámicos C57BL
8.
Phys Med Biol ; 60(17): 6975-90, 2015 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-26305137

RESUMEN

A novel technique for measuring in vivo human skin viscoelastic properties using optical elastography has been developed. The technique uses geometrically focused surface (GFS) waves that allow for wide bandwidth measurements of the wave field. An analytical solution for the case of a radiating annular disk surface source was fit to experimentally measured GFS waves, enabling an estimate of the frequency-dependent surface wavenumber, which can then be related to the dynamic shear modulus. Several viscoelastic models were then fit to the dynamic shear modulus dispersion curve. Viscoelastic models were evaluated based on their overall quality of fit and variability amongst healthy volunteers. An Ecoflex phantom was used to validate the procedure and results by comparison to similar studies using the same type of phantom. For skin results, it was found that the 'α' parameters from the fractional models had the least variability, with coefficients of variability of 0.15, and 0.16. The best fitting models were the standard linear solid, and the fractional Voigt, with a mean fit correlation coefficient, R(2), of 0.93, 0.89, respectively. This study has demonstrated the efficacy of this new method, and with larger studies the viscoelastic skin models could be used to identify various skin diseases and their response to treatment.


Asunto(s)
Módulo de Elasticidad/fisiología , Diagnóstico por Imagen de Elasticidad/métodos , Modelos Teóricos , Fantasmas de Imagen , Piel/metabolismo , Adulto , Simulación por Computador , Humanos , Interpretación de Imagen Asistida por Computador , Viscosidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...