Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Biol Cell ; 12(11): 3658-67, 2001 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-11694596

RESUMEN

A prereplicative complex (pre-RC) of proteins is assembled at budding yeast origins of DNA replication during the G1-phase of the cell cycle, as shown by genomic footprinting. The proteins responsible for this prereplicative footprint have yet to be identified but are likely to be involved in the earliest stages of the initiation step of chromosome replication. Here we show that MCM2-7 proteins are essential for both the formation and maintenance of the pre-RC footprint at the origin ARS305. It is likely that pre-RCs contain heteromeric complexes of MCM2-7 proteins, since degradation of Mcm2, 3, 6, or 7 during G1-phase, after pre-RC formation, causes loss of Mcm4 from the nucleus. It has been suggested that pre-RCs on unreplicated chromatin may generate a checkpoint signal that inhibits premature mitosis during S-phase. We show that, although mitosis does indeed occur in the absence of replication if MCM proteins are degraded during G1-phase, anaphase is prevented if MCMs are degraded during S-phase. Our data indicate that pre-RCs do not play a direct role in checkpoint control during chromosome replication.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Replicación del ADN , Proteínas de Unión al ADN/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae , Transducción de Señal , Proteínas de Ciclo Celular/genética , Núcleo Celular/metabolismo , Proteínas Cromosómicas no Histona , Cromosomas Fúngicos , Proteínas de Unión al ADN/genética , Proteínas Fúngicas/genética , Fase G1 , Componente 4 del Complejo de Mantenimiento de Minicromosoma , Componente 6 del Complejo de Mantenimiento de Minicromosoma , Componente 7 del Complejo de Mantenimiento de Minicromosoma , Mitosis/fisiología , Proteínas Nucleares/genética , Fase S , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Schizosaccharomyces pombe
2.
Genes Dev ; 14(21): 2757-70, 2000 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-11069892

RESUMEN

Cohesin complex acts in the formation and maintenance of sister chromatid cohesion during and after S phase. Budding yeast Scc1p/Mcd1p, an essential subunit, is cleaved and dissociates from chromosomes in anaphase, leading to sister chromatid separation. Most cohesin in higher eukaryotes, in contrast, is dissociated from chromosomes well before anaphase. The universal role of cohesin during anaphase thus remains to be determined. We report here initial characterization of four putative cohesin subunits, Psm1, Psm3, Rad21, and Psc3, in fission yeast. They are essential for sister chromatid cohesion. Immunoprecipitation demonstrates stable complex formation of Rad21 with Psm1 and Psm3 but not with Psc3. Chromatin immunoprecipitation shows that cohesin subunits are enriched in broad centromere regions and that the level of centromere-associated Rad21 did not change from metaphase to anaphase, very different from budding yeast. In contrast, Rad21 containing similar cleavage sites to those of Scc1p/Mcd1p is cleaved specifically in anaphase. This cleavage is essential, although the amount of cleaved product is very small (<5%). Mis4, another sister chromatid cohesion protein, plays an essential role for loading Rad21 on chromatin. A simple model is presented to explain the specific behavior of fission yeast cohesin and why only a tiny fraction of Rad21 is sufficient to be cleaved for normal anaphase.


Asunto(s)
Anafase/fisiología , Proteínas Fúngicas/fisiología , Proteínas Nucleares/metabolismo , Proteínas Nucleares/fisiología , Fosfoproteínas/metabolismo , Procesamiento Proteico-Postraduccional , Fase S/fisiología , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces/metabolismo , Proteínas de Ciclo Celular/fisiología , Centrómero/química , Proteínas Cromosómicas no Histona , Cromosomas Fúngicos/fisiología , Proteínas Fúngicas/genética , Proteínas Fúngicas/aislamiento & purificación , Marcación de Gen , Genes Fúngicos , Sustancias Macromoleculares , Proteínas Nucleares/genética , Proteínas Nucleares/aislamiento & purificación , Fosforilación , Subunidades de Proteína , Schizosaccharomyces/genética , Cohesinas
3.
EMBO J ; 19(7): 1681-90, 2000 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-10747035

RESUMEN

We describe an in situ technique for studying the chromatin binding of proteins in the fission yeast Schizosaccharomyces pombe. After tagging the protein of interest with green fluorescent protein (GFP), chromatin-associated protein is detected by GFP fluorescence following cell permeabilization and washing with a non-ionic detergent. Cell morphology and nuclear structure are preserved in this procedure, allowing structures such as the mitotic spindle to be detected by indirect immunofluorescence. Cell cycle changes in the chromatin association of proteins can therefore be determined from individual cells in asynchronous cultures. We have applied this method to the DNA replication factor mcm4/cdc21, and find that chromatin association occurs during anaphase B, significantly earlier than is the case in budding yeast. Binding of mcm4 to chromatin requires orc1 and cdc18 (homologous to Cdc6 in budding yeast). Release of mcm4 from chromatin occurs during S phase and requires DNA replication. Upon overexpressing cdc18, we show that mcm4 is required for re-replication of the genome in the absence of mitosis and is associated with chromatin in cells undergoing re-replication.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas de Saccharomyces cerevisiae , Schizosaccharomyces/metabolismo , Anafase , Secuencia de Bases , Proteínas de Ciclo Celular/genética , Cartilla de ADN/genética , Replicación del ADN , Proteínas de Unión al ADN/genética , Proteínas Fúngicas/genética , Expresión Génica , Genes Fúngicos , Componente 4 del Complejo de Mantenimiento de Minicromosoma , Complejo de Reconocimiento del Origen , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Schizosaccharomyces/citología , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe
4.
J Cell Sci ; 113 ( Pt 8): 1447-58, 2000 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-10725227

RESUMEN

In two independent screens we isolated fission yeast mutations with phenotypes suggesting defects in B-cyclin function or expression. These mutations define a single gene which we call ded1. We show that ded1 encodes a general translation factor that is related in sequence and function to RNA helicases required for translation in other species. Levels of the B-cyclins Cig2 and Cdc13 are dramatically reduced upon inactivation of Ded1, and this reduction is independent of degradation by the anaphase promoting complex. When a ded1 mutant is grown under semi-restrictive conditions, the translation of Cig2 (and to a lesser extent Cdc13), is impaired relative to other proteins. We show that B-cyclin translation is specifically inhibited upon nitrogen starvation of wild-type cells, when B-cyclin/Cdc2 inactivation is a prerequisite for G(1) arrest and subsequent mating. Our data suggest that translational inhibition of B-cyclin expression represents a third mechanism, in addition to cyclin degradation and Rum1 inhibition, that contributes to Cdc2 inactivation as cells exit from the mitotic cell cycle and prepare for meiosis.


Asunto(s)
Proteínas de Ciclo Celular , Ciclo Celular/fisiología , Proteínas Fúngicas/fisiología , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces/citología , Schizosaccharomyces/fisiología , ARN Helicasas DEAD-box , Genes Fúngicos , Biosíntesis de Proteínas , ARN Helicasas/fisiología
5.
J Cell Sci ; 113 ( Pt 4): 683-95, 2000 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-10652261

RESUMEN

In eukaryotes, the initiation of DNA synthesis requires the assembly of a pre-replicative complex (pre-RC) at origins of replication. This involves the sequential binding of ORC (origin-recognition-complex), Cdc6 and MCM proteins, a process referred to as licensing. After origin firing, the Cdc6 and MCM proteins dissociate from the chromatin, and do not rebind until after the completion of mitosis, thereby restricting replication to a single round in each cell cycle. Although nuclei normally become licensed for replication as they enter G(1), the extent to which the license is retained when cells enter the quiescent state (G(0)) is controversial. Here we show that the replication capacity of nuclei from Swiss 3T3 cells, in Xenopus egg extracts, is not lost abruptly with the onset of quiescence, but instead declines gradually. The decline in replication capacity, which affects both the number of nuclei induced to replicate and their subsequent rate of DNA synthesis, is accompanied by a fall in the level of chromatin-bound MCM2. When quiescent nuclei are incubated in egg extracts, they do not bind further MCMs unless the nuclei are first permeabilized. The residual replication capacity of intact nuclei must therefore be dependent on the remaining endogenous MCMs. Although high levels of Cdk activity are known to block MCM binding, we show that the failure of intact nuclei in egg extracts to increase their bound MCMs is not due to their uptake and accumulation of Cdk complexes. Instead, the failure of binding must be due to exclusion of some other binding factor from the nucleus, or to the presence within nuclei of an inhibitor of binding other than Cdk activity. In contrast to the situation in Xenopus egg extracts, following serum stimulation of intact quiescent cells, the level of bound MCMs does increase before the cells reach S phase, without any disruption of the nuclear envelope.


Asunto(s)
Núcleo Celular/metabolismo , Replicación del ADN/fisiología , Proteínas de Unión al ADN/genética , Factores de Transcripción/genética , Células 3T3 , Adenina/análogos & derivados , Adenina/farmacología , Animales , Proteínas Sanguíneas/farmacología , Núcleo Celular/química , Cromatina/metabolismo , Quinasas Ciclina-Dependientes/metabolismo , Replicación del ADN/efectos de los fármacos , Proteínas de Unión al ADN/metabolismo , Inhibidores Enzimáticos/farmacología , Mamíferos , Ratones , Proteína 1 de Mantenimiento de Minicromosoma , Componente 2 del Complejo de Mantenimiento de Minicromosoma , Membrana Nuclear/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Oocitos/fisiología , Factores de Transcripción/metabolismo , Xenopus
6.
Nat Cell Biol ; 1(7): 415-22, 1999 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-10559985

RESUMEN

Cyclin-dependent kinases (CDKs) activate the firing of replication origins during the S phase of the cell cycle. They also block re-initiation of DNA replication within a single cell cycle, by preventing the assembly of prereplicative complexes at origins. We show here that, in budding yeast, CDKs exclude the essential prereplicative-complex component Mcm4 from the nucleus. Although origin firing can be triggered by the B-type cyclins only, both G1-phase and B-type cyclins cause exit of Mcm4 from the nucleus. These results suggest that G1 cyclins may diminish the cell's capacity to assemble prereplicative complexes before B-type cyclins trigger origin firing during S phase.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Quinasas Ciclina-Dependientes/metabolismo , Ciclinas/metabolismo , Proteínas de Unión al ADN , Proteínas Fúngicas/metabolismo , Fase G1/fisiología , Fase S/fisiología , Proteínas de Saccharomyces cerevisiae , Proteína Quinasa CDC28 de Saccharomyces cerevisiae/metabolismo , Ciclo Celular/fisiología , Proteínas de Ciclo Celular/genética , Cromatina/metabolismo , Replicación del ADN/genética , Replicación del ADN/fisiología , Proteínas Fúngicas/genética , Genes Reporteros/genética , Componente 4 del Complejo de Mantenimiento de Minicromosoma , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiología
7.
Exp Cell Res ; 252(1): 165-74, 1999 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-10502409

RESUMEN

We report the identification of a novel nucleolar protein from fission yeast, p17(nhp2), which is homologous to the recently identified Nhp2p core component of H+ACA snoRNPs in Saccharomyces cerevisiae. We show that the fission yeast p17(nhp2) localizes to the nucleolus in live S. cerevisiae or Schizosaccharomyces pombe cells and is functionally conserved since the fission yeast gene can complement a deletion of the NHP2 gene in budding yeast. Analysis of p17(nhp2) during the mitotic cell cycles of living fission and budding yeast cells shows that this protein, and by implication H+ACA snoRNPs, remains localized with nucleolar material during mitosis, although the gross organization of partitioning of p17(nhp2) during anaphase is different in a comparison of the two yeasts. During anaphase in S. pombe p17(nhp2) trails segregating chromatin, while in S. cerevisiae the protein segregates alongside bulk chromatin. The pattern of segregation comparing haploid and diploid S. cerevisiae cells suggests that p17(nhp2) is closely associated with the rDNA during nuclear division.


Asunto(s)
Proteínas Fúngicas/metabolismo , Proteínas Nucleares/metabolismo , Ribonucleoproteínas Nucleares Pequeñas , Ribonucleoproteínas Nucleolares Pequeñas/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Ciclo Celular , Nucléolo Celular/metabolismo , Cartilla de ADN/genética , ADN Complementario/genética , ADN de Hongos/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Eliminación de Gen , Genes Fúngicos , Prueba de Complementación Genética , Datos de Secuencia Molecular , Proteínas Nucleares/química , Proteínas Nucleares/genética , Filogenia , Ribonucleoproteínas Nucleolares Pequeñas/química , Ribonucleoproteínas Nucleolares Pequeñas/genética , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Schizosaccharomyces/citología , Schizosaccharomyces/genética , Homología de Secuencia de Aminoácido , Especificidad de la Especie
9.
Curr Opin Genet Dev ; 6(2): 208-14, 1996 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-8722178

RESUMEN

A clearer picture of replication control is emerging through the characterization of proteins, such as cdc18/Cdc6 and members of the mini-chromosome maintenance (MCM) protein family, that are involved in the initiation step. Cyclin B dependent kinases have conserved roles in both Saccharomyces cerevisiae and Schizosaccharomyces pombe, switching on DNA replication in G1 and preventing re-replication in G2. A model is suggested where MCMs and CDKs play complementary roles to ensure 'once-per-cell-cycle' replication, with CDKs maintaining a G1 or G2 state, whereas MCMs provide a cis-acting control on chromatin to prevent reinitiation during a single S phase.


Asunto(s)
Ciclo Celular/fisiología , Replicación del ADN/fisiología , Proteínas de Ciclo Celular/fisiología , Levaduras/genética
10.
Bioessays ; 18(3): 183-90, 1996 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-8867732

RESUMEN

The regulatory mechanism which ensures that eukaryotic chromosomes replicate precisely once per cell cycle is a basic and essential cellular property of eukaryotes. This fundamental aspect of DNA replication is still poorly understood, but recent advances encourage the view that we may soon have a clearer picture of how this regulation is achieved. This review will discuss in particular the role of proteins in the minichromosome maintenance (MCM) family, which may hold the key to understanding how DNA is replicated once, and only once, per cell cycle.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Replicación del ADN/fisiología , Animales , Cromosomas/genética , Cromosomas/metabolismo , Replicación del ADN/genética , Proteínas Nucleares/metabolismo , Xenopus
11.
EMBO J ; 15(5): 1085-97, 1996 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-8605878

RESUMEN

A Xenopus homologue of Schizosaccharomyces pombe cdc21 has been characterized as a new member of the MCM family of proteins. The cdc21 protein exhibits cell-cycle dependent chromatin binding and phosphorylation in association with S-phase control. Cdc21 binds to decondensing chromatin at the end of mitosis, localizing to numerous foci which form prior to reconstitution of the nuclear membrane. The association of cdc21 with chromatin occurs in membrane-free high speed extracts and is resistant to detergent extraction. The spatial organization of the cdc21 foci resembles that of pre-replication centres though no co-localization with RP-A was observed. Cdc21 remains bound to chromatin during the initiation of DNA replication and is displaced as the DNA replication forks progress. These subnuclear changes in localization correlate with cell-cycle-regulated changes in phosphorylation. Cdc21 binds to chromatin in an underphosphorylated state, but in early S phase the nuclear localized cdc21 is partially phosphorylated before it is displaced from the chromatin. Cytoplasmic cdc21 remains underphosphorylated but at the beginning of mitosis the entire pool of cdc21 is hyperphosphorylated, possibly by the cdc2/cyclin B kinase. These properties identify Xenopus cdc21 as a possible component of the DNA licensing factor.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Ciclo Celular/fisiología , Núcleo Celular/metabolismo , Cromatina/metabolismo , Replicación del ADN/fisiología , Proteínas de Unión al ADN , Proteínas de Schizosaccharomyces pombe , Animales , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Clonación Molecular , ADN Complementario/genética , Femenino , Técnicas In Vitro , Masculino , Componente 4 del Complejo de Mantenimiento de Minicromosoma , Modelos Biológicos , Datos de Secuencia Molecular , Membrana Nuclear/metabolismo , Fosforilación , Unión Proteica , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Xenopus
12.
EMBO J ; 15(4): 861-72, 1996 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-8631307

RESUMEN

The fission yeast cdc21 protein belongs to the MCM family, implicated in the once per cell cycle regulation of chromosome replication. In budding yeast, proteins in this family are eliminated from the nucleus during S phase, which has led to the suggestion that they may serve to distinguish unreplicated from replicated DNA, as in the licensing factor model. We show here that, in contrast to the situation in budding yeast, cdc21 remains in the nucleus after S phase, as is found for related proteins in mammalian cells. We suggest that regulation of nuclear import of these proteins may not be an essential aspect of their function in chromosome replication. To determine the function of cdc21+, we have analysed the phenotype of a gene deletion. cdc21+ is required for entry into S phase and, unexpectedly, a proportion of cells depleted of the gene product are able to enter mitosis in the absence of DNA replication. These results are consistent with the view that individual proteins in the MCM family are required for all initiation events, and defective initiation may impair the coordination between mitosis and S phase.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Ciclo Celular , Proteínas de Unión al ADN , Fase S , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces/citología , Animales , Secuencia de Bases , Núcleo Celular/metabolismo , Cartilla de ADN/química , Replicación del ADN , Femenino , Proteínas Fúngicas/fisiología , Eliminación de Gen , Regulación Fúngica de la Expresión Génica , Genes Fúngicos , Masculino , Ratones , Componente 4 del Complejo de Mantenimiento de Minicromosoma , Datos de Secuencia Molecular , Familia de Multigenes , Proteínas Nucleares/fisiología , ARN Mensajero/genética , Ratas
13.
J Cell Biol ; 129(6): 1433-45, 1995 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-7790346

RESUMEN

We have recently cloned and characterized a human member (BM28) of the MCM2-3-5 family of putative relication factors (Todorov, I.T., R. Pepperkok, R.N. Philipova, S. Kearsey, W. Ansorge, and D. Werner. 1994. J. Cell Sci. 107:253-265). While this protein is located in the nucleus throughout interphase, we report here a dramatic alteration in its nuclear binding during the cell cycle. BM28 is retained in the nucleus after Triton X-100 extraction in G1 and early S phase cells, but is progressively lost as S phase proceeds, and little BM28 is retained in detergent-extracted G2 nuclei. BM28 that is resistant to extraction in G1 nuclei is removed by DNase I digestion, suggesting that the protein is chromatin associated. In addition, we present evidence for variations in the electrophoretic mobility of BM28 that may reflect posttranslational modifications of BM28 during the cell cycle. During mitosis, BM28 is present as a fast-migrating form, but on entry into G1, the protein is converted into a slow-migrating form. With the onset of S phase, the slow-migrating form is progressively converted into the fast form. BM28 is phosphorylated at all stages of the cell cycle, but during interphase the fast form is hyperphosphorylated compared with the slow form. These apparent changes in modification may reflect or effect changes in the nuclear binding of BM28. The behavior of BM28 is not dissimilar to related proteins in Saccharomyces cerevisiae, such as Mcm2p, which are excluded from the nucleus after DNA replication. We speculate that BM28 may be involved in the control that limits eukaryotic DNA replication to one round per cell cycle.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Ciclo Celular/fisiología , Núcleo Celular/metabolismo , Cromatina/metabolismo , Replicación del ADN , Proteínas Nucleares/metabolismo , Células 3T3 , Animales , Proteínas de Ciclo Celular/aislamiento & purificación , Núcleo Celular/ultraestructura , Cromatina/ultraestructura , Técnica del Anticuerpo Fluorescente , Proteínas Fúngicas/metabolismo , Células HeLa , Humanos , Ratones , Microscopía Fluorescente , Componente 2 del Complejo de Mantenimiento de Minicromosoma , Modelos Estructurales , Proteínas Nucleares/aislamiento & purificación , Unión Proteica
14.
Mol Gen Genet ; 243(2): 207-14, 1994 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-8177217

RESUMEN

Transcription of the yeast phosphoglycerate kinase gene (PGK) is activated by an array of nuclear factors including the multifunctional protein RAP1. We have demonstrated that the transcriptional co-activator GAL11, which was identified as an auxiliary factor to GAL4 and which is believed to interact with the zinc finger of the trans-activator, positively influences the level of PGK transcription on both fermentable and non-fermentable carbon sources. This positive effect is only observed when the RAP1 site in the upstream activation sequence (UAS) is present, implying that GAL11 acts through RAP1. Expression of the RAP1 gene is not reduced in the gal11 background, and in vivo footprinting shows that GAL11 does not influence RAP1 DNA-binding activity. Therefore the effect of GAL11 on PGK transcription must be mediated at the PGK UAS, presumably as part of the activation complex. It has been proposed that RAP1 may act as a facilitator of GCR1 binding at the PGK UAS and therefore it is conceivable that the target for GAL11 may in fact be GCR1. A further implication of this study is that GAL11 can interact with proteins such as RAP1 or GCR1 that are apparently structurally dissimilar from GAL4 and other zinc finger DNA-binding proteins.


Asunto(s)
Proteínas Fúngicas/metabolismo , Proteínas de Unión al GTP/metabolismo , Regulación Fúngica de la Expresión Génica , Fosfoglicerato Quinasa/genética , Proteínas de Saccharomyces cerevisiae , Factores de Transcripción/metabolismo , Secuencia de Bases , Sitios de Unión , ADN de Hongos/genética , Proteínas Fúngicas/genética , Genes Fúngicos , Complejo Mediador , Datos de Secuencia Molecular , Plásmidos , Regiones Promotoras Genéticas , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Análisis de Secuencia de ADN/métodos , Transactivadores/metabolismo , Factores de Transcripción/genética , Transcripción Genética , Dedos de Zinc/genética , Proteínas de Unión al GTP rap
15.
J Cell Sci ; 107 ( Pt 1): 253-65, 1994 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-8175912

RESUMEN

Molecular cloning and characterisation of a human nuclear protein designated BM28 is reported. On the amino acid level this 892 amino acid protein, migrating on SDS-gels as a 125 kDa polypeptide, shares areas of significant similarity with a recently defined family of early S phase proteins. The members of this family, the Saccharomyces cerevisiae Mcm2p, Mcm3p, Cdc46p/Mcm5p, the Schizosaccharomyces pombe Cdc21p and the mouse protein P1 are considered to be involved in the onset of DNA replication. The highest similarity was found with Mcm2p (42% identity over the whole length and higher than 75% over a conservative region of 215 amino acid residues), suggesting that BM28 could represent the human homologue of the S. cerevisiae MCM2. Using antibodies raised against the recombinant BM28 the corresponding antigen was found to be localised in the nuclei of various mammalian cells. Microinjection of anti-BM28 antibody into synchronised mouse NIH3T3 or human HeLa cells presents evidence for the involvement of the protein in cell cycle progression. When injected in G1 phase the anti-BM28 antibody inhibits the onset of subsequent DNA synthesis as tested by the incorporation of bromodeoxyuridine. Microinjection during the S phase had no effect on DNA synthesis, but inhibits cell division. The data suggest that the nuclear protein BM28 is required for two events of the cell cycle, for the onset of DNA replication and for cell division.


Asunto(s)
Proteínas de Ciclo Celular , División Celular , Proteínas Nucleares/metabolismo , Fase S , Células 3T3 , Secuencia de Aminoácidos , Animales , Anticuerpos/farmacología , Línea Celular , Clonación Molecular , Secuencia de Consenso , ADN/biosíntesis , Replicación del ADN , Células HeLa , Humanos , Cinética , Ratones , Componente 2 del Complejo de Mantenimiento de Minicromosoma , Datos de Secuencia Molecular , Proteínas Nucleares/química , Proteínas Nucleares/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Homología de Secuencia de Aminoácido
18.
Nucleic Acids Res ; 20(21): 5571-7, 1992 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-1454522

RESUMEN

The cdc21+ gene of Schizosaccharomyces pombe was originally identified in a screen for cdc mutants affecting S phase and nuclear division. Here we show that the cdc21+ gene product belongs to a family of proteins implicated in DNA replication. These include the Saccharomyces cerevisiae MCM2 and MCM3 proteins, which are needed for the efficient function of certain replication origins, and S.cerevisiae CDC46, which is required for the initiation of chromosome replication. The cdc21 mutant is defective in the mitotic maintenance of some plasmids, like mcm2 and mcm3. The mutant arrests with a single nucleus containing two genome equivalents of DNA, and maintains a cytoplasmic microtubular configuration. Activation of most, but not all, replication origins in the mutant may result in failure to replicate a small proportion of the genome, and this could explain the arrest phenotypes. Using the polymerase chain reaction technique, we have identified new cdc21(+)-related genes in S.cerevisiae, S.pombe and Xenopus laevis. Our results suggest that individual members of the cdc21(+)-related family are highly conserved in evolution.


Asunto(s)
Proteínas de Ciclo Celular , Replicación del ADN , Proteínas de Unión al ADN , Proteínas Fúngicas/genética , Proteínas de Saccharomyces cerevisiae , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces/genética , Proteínas de Xenopus , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Proteínas Cromosómicas no Histona , Cromosomas Fúngicos , Clonación Molecular , ADN de Hongos/biosíntesis , Proteínas Fúngicas/metabolismo , Genes Fúngicos , Humanos , Componente 3 del Complejo de Mantenimiento de Minicromosoma , Componente 4 del Complejo de Mantenimiento de Minicromosoma , Datos de Secuencia Molecular , Proteínas Nucleares , Fenotipo , Reacción en Cadena de la Polimerasa , Mapeo Restrictivo , Saccharomyces cerevisiae/genética , Homología de Secuencia de Aminoácido , Vertebrados/genética
20.
Nucleic Acids Res ; 19(7): 1385-91, 1991 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-2027746

RESUMEN

In an attempt to identify trans-acting factors involved in replication origin function, we have characterized the RAR3 and RAR5 genes, identified by mutations which increase the mitotic stability of artificial chromosomes whose replication is dependent on the activity of weak ARS elements. Sequence analysis has shown that the RAR3 gene is identical to GAL11/SPT13, which encodes a putative transcription factor involved in the expression of a wide range of genes. Change-of-function mutations that truncate the RAR3 protein appear to be required to enhance chromosome stability. In contrast, loss of the RAR5 protein results in enhanced chromosome stability, as if the protein is an inhibitor of ARS function. The RAR5 gene encodes the 175 kDa DNA strand transfer protein beta, an activity that can promote the transfer of a strand from a double-stranded DNA molecule to a complementary single strand. This observation implies that a presumed recombination activity can affect eukaryotic chromosomal replication.


Asunto(s)
Recombinación Genética , Saccharomyces cerevisiae/genética , Transcripción Genética , Cromosomas Fúngicos , Clonación Molecular , Proteínas Fúngicas/genética , Galactosa/genética , Biblioteca de Genes , Genes Fúngicos , Genoma Humano , Humanos , Datos de Secuencia Molecular , Mutación , Fenotipo , Plásmidos , Mapeo Restrictivo , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...