Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
2.
Proc Natl Acad Sci U S A ; 98(24): 13699-704, 2001 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-11717431

RESUMEN

Newts are capable of regenerating several anatomical structures and organs, including their limbs. This remarkable regenerative capacity is thought to depend on cellular dedifferentiation. Terminally differentiated mammalian cells, by contrast, are normally incapable of reversing the differentiation process. Several factors could explain the absence of cellular dedifferentiation in mammals: (i) inadequate expression of genes that initiate dedifferentiation; (ii) insufficient intracellular signaling pathways; (iii) irreversible expression of differentiation factors; and (iv) structural characteristics that make dedifferentiation impossible. To investigate the causes underlying the lack of cellular plasticity in mammalian cells, we examined the effect of an extract derived from newt regenerating limbs on terminally differentiated mouse C2C12 myotubes. Approximately 18% of murine myotubes reentered the cell cycle when treated with regeneration extract, whereas 25% of newt myotubes exhibited cell cycle reentry. The muscle differentiation proteins MyoD, myogenin, and troponin T were reduced to undetectable levels in 15-30% of treated murine myotubes. We observed cellular cleavage in 11% of the treated murine myotubes and approximately 50% of these myotubes continued to cleave to produce proliferating mononucleated cells. These data indicate that mammalian myotubes can dedifferentiate when stimulated with the appropriate factors and suggest that one mechanism preventing dedifferentiation of mammalian cells is inadequate spatial or temporal expression of genes that initiate dedifferentiation.


Asunto(s)
Músculos/citología , Regeneración/fisiología , Salamandridae/metabolismo , Animales , Diferenciación Celular , Extractos Celulares , Línea Celular , Mamíferos , Ratones , Proteína MioD/metabolismo , Miogenina/metabolismo , Proteínas/metabolismo
3.
Circulation ; 104(9): 1071-5, 2001 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-11524404

RESUMEN

BACKGROUND: Mutations in the human ether-à-go-go-related gene (HERG) cause chromosome 7-linked long-QT syndrome (LQTS), an inherited disorder of cardiac repolarization that predisposes affected individuals to arrhythmia and sudden death. METHODS AND RESULTS: Here, we characterize the physiological consequences of 3 LQTS-associated missense mutations (V612L, T613M, and L615V) located in the pore helix of the HERG channel subunit. Mutant HERG subunits were heterologously expressed in Xenopus oocytes alone or in combination with wild-type HERG subunits. Two-microelectrode voltage-clamp techniques were used to record currents, and a single oocyte chemiluminescence assay was used to assay surface expression of epitope-tagged subunits. When expressed alone, V612L and T613M HERG subunits did not induce detectable currents, and L615V induced very small currents. Coexpression of mutant and wild-type HERG subunits caused a dominant-negative effect that varied for each mutation. CONCLUSIONS: These findings define the physiological consequences of mutations in HERG that cause LQTS and indicate the importance of the pore helix of HERG for normal channel function.


Asunto(s)
Proteínas de Transporte de Catión , Proteínas de Unión al ADN , Síndrome de QT Prolongado/genética , Canales de Potasio con Entrada de Voltaje , Canales de Potasio/genética , Transactivadores , Animales , Canal de Potasio ERG1 , Estimulación Eléctrica , Canales de Potasio Éter-A-Go-Go , Femenino , Expresión Génica , Genotipo , Humanos , Potenciales de la Membrana/genética , Potenciales de la Membrana/fisiología , Mutación Missense , Oocitos , Canales de Potasio/fisiología , ARN Complementario/administración & dosificación , ARN Complementario/genética , Regulador Transcripcional ERG , Xenopus laevis
5.
Circulation ; 103(1): 89-95, 2001 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-11136691

RESUMEN

BACKGROUND: The congenital long-QT syndrome (LQTS) is caused by mutations on several genes, all of which encode cardiac ion channels. The progressive understanding of the electrophysiological consequences of these mutations opens unforeseen possibilities for genotype-phenotype correlation studies. Preliminary observations suggested that the conditions ("triggers") associated with cardiac events may in large part be gene specific. METHODS AND RESULTS: We identified 670 LQTS patients of known genotype (LQT1, n=371; LQT2, n=234; LQT3, n=65) who had symptoms (syncope, cardiac arrest, sudden death) and examined whether 3 specific triggers (exercise, emotion, and sleep/rest without arousal) differed according to genotype. LQT1 patients experienced the majority of their events (62%) during exercise, and only 3% occurred during rest/sleep. These percentages were almost reversed among LQT2 and LQT3 patients, who were less likely to have events during exercise (13%) and more likely to have events during rest/sleep (29% and 39%). Lethal and nonlethal events followed the same pattern. Corrected QT interval did not differ among LQT1, LQT2, and LQT3 patients (498, 497, and 506 ms, respectively). The percent of patients who were free of recurrence with ss-blocker therapy was higher and the death rate was lower among LQT1 patients (81% and 4%, respectively) than among LQT2 (59% and 4%, respectively) and LQT3 (50% and 17%, respectively) patients. CONCLUSIONS: Life-threatening arrhythmias in LQTS patients tend to occur under specific circumstances in a gene-specific manner. These data allow new insights into the mechanisms that relate the electrophysiological consequences of mutations on specific genes to clinical manifestations and offer the possibility of complementing traditional therapy with gene-specific approaches.


Asunto(s)
Síndrome de QT Prolongado/genética , Antagonistas Adrenérgicos beta/uso terapéutico , Adulto , Arritmias Cardíacas/etiología , Arritmias Cardíacas/genética , Arritmias Cardíacas/fisiopatología , Muerte Súbita Cardíaca/etiología , Electrocardiografía , Emociones , Ejercicio Físico , Femenino , Genotipo , Humanos , Canales Iónicos/genética , Síndrome de QT Prolongado/clasificación , Síndrome de QT Prolongado/diagnóstico , Síndrome de QT Prolongado/tratamiento farmacológico , Síndrome de QT Prolongado/fisiopatología , Masculino , Fenotipo , Factores Sexuales , Sueño , Tasa de Supervivencia , Síncope/etiología
6.
J Biol Chem ; 276(6): 4150-7, 2001 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-11050079

RESUMEN

Using differential display of rat fetal and postnatal cardiomyocytes, we have identified a novel seven-transmembrane receptor, ETL. The cDNA-predicted amino acid sequence of ETL indicated that it encodes a 738-aa protein composed of a large extracellular domain with epidermal growth factor (EGF)-like repeats, a seven-transmembrane domain, and a short cytoplasmic tail. ETL belongs to the secretin family of G-protein-coupled peptide hormone receptors and the EGF-TM7 subfamily of receptors. The latter are characterized by a variable number of extracellular EGF and cell surface domains and conserved seven transmembrane-spanning regions. ETL mRNA expression is up-regulated in the adult rat and human heart. In situ hybridization analyses revealed expression in rat cardiomyocytes and abundant expression in vascular and bronchiolar smooth muscle cells. In COS-7 cells transfected with Myc-tagged rat ETL, rat ETL exists as a stable dimer and undergoes endoproteolytic cleavage of the extracellular domain. The proteolytic activity can be abolished by a specific mutation, T455A, in this domain. In transfected mammalian cells, ETL is associated with cell membranes and is also observed in cytoplasmic vesicles. ETL is the first seven-transmembrane receptor containing EGF-like repeats that is developmentally regulated in the heart.


Asunto(s)
Factor de Crecimiento Epidérmico/genética , Regulación del Desarrollo de la Expresión Génica , Corazón/crecimiento & desarrollo , Miocardio/metabolismo , Receptores de Superficie Celular/genética , Receptores Acoplados a Proteínas G , Secretina/genética , Empalme Alternativo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Células COS , Mapeo Cromosómico , Cromosomas Humanos Par 1 , Cartilla de ADN , Dimerización , Humanos , Datos de Secuencia Molecular , ARN Mensajero/genética , Ratas , Receptores de Superficie Celular/química , Homología de Secuencia de Aminoácido , Regulación hacia Arriba
7.
Dev Dyn ; 219(2): 282-6, 2000 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-11002347

RESUMEN

Because the transcription factor Lef1 is important for development of several vertebrate organs but has not been investigated for involvement in epimorphic regeneration, we examined its expression during regeneration of amputated adult zebrafish caudal fins. We found that lef1 is markedly up-regulated in the newly formed wound epidermis of the fin regenerate and is maintained in the basal epidermal layer during formation of the regeneration blastema. During regenerative outgrowth, lef1 expression is strongest in epidermal cells adjacent to newly aligned scleroblasts that secrete bone matrix, while it is low or undetectable in epidermis adjacent to mesenchymal areas with either mature bone or proliferative distal blastema cells. This localization is similar to that of the putative fin ray patterning signal Shh. In addition, brief treatments of fin regenerates with retinoic acid or the synthetic Fgfr1 inhibitor SU5402 down-regulate epidermal lef1, similar to their effects on shh. These results suggest a role for Lef1 in scleroblast alignment analogous to that proposed for Shh. Other Wnt signaling pathway members wnt3a, wnt5, and beta-catenin are also expressed in the fin regenerate. Our data suggest that Lef1 has specific roles in inducing and patterning vertebrate regenerating tissue.


Asunto(s)
Proteínas de Unión al ADN/genética , Epidermis/fisiología , Extremidades/fisiología , Regulación de la Expresión Génica , Regeneración , Factores de Transcripción/genética , Animales , Proteínas de Unión al ADN/biosíntesis , Factor de Unión 1 al Potenciador Linfoide , Mesodermo/fisiología , Factores de Tiempo , Factores de Transcripción/biosíntesis , Transcripción Genética , Pez Cebra
8.
Circulation ; 102(10): 1178-85, 2000 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-10973849

RESUMEN

BACKGROUND: Long-QT Syndrome (LQTS) is a cardiovascular disorder characterized by prolongation of the QT interval on ECG and presence of syncope, seizures, and sudden death. Five genes have been implicated in Romano-Ward syndrome, the autosomal dominant form of LQTS: KVLQT1, HERG, SCN5A, KCNE1, and KCNE2. Mutations in KVLQT1 and KCNE1 also cause the Jervell and Lange-Nielsen syndrome, a form of LQTS associated with deafness, a phenotypic abnormality inherited in an autosomal recessive fashion. METHODS AND RESULTS: We used mutational analyses to screen a pool of 262 unrelated individuals with LQTS for mutations in the 5 defined genes. We identified 134 mutations in addition to the 43 that we previously reported. Eighty of the mutations were novel. The total number of mutations in this population is now 177 (68% of individuals). CONCLUSIONS: KVLQT1 (42%) and HERG (45%) accounted for 87% of identified mutations, and SCN5A (8%), KCNE1 (3%), and KCNE2 (2%) accounted for the other 13%. Missense mutations were most common (72%), followed by frameshift mutations (10%), in-frame deletions, and nonsense and splice-site mutations (5% to 7% each). Most mutations resided in intracellular (52%) and transmembrane (30%) domains; 12% were found in pore and 6% in extracellular segments. In most cases (78%), a mutation was found in a single family or an individual.


Asunto(s)
Síndrome de QT Prolongado/genética , Adolescente , Adulto , Anciano , Niño , Análisis Mutacional de ADN , Femenino , Mutación del Sistema de Lectura , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Mutación Missense , Fenotipo
9.
Am J Respir Cell Mol Biol ; 23(3): 320-6, 2000 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-10970822

RESUMEN

Elastin is a major component of the mammalian lung, predominantly found in the alveoli. Destruction of alveolar elastic fibers is implicated in the pathogenic mechanism of emphysema in adults. These data define a role for elastin in the structure and function of the mature lung, and suggest that elastin is important for alveogenesis. To investigate the role of elastin in lung development, we examined mice lacking elastin (Eln-/-). At birth, the distal air sacs of Eln-/- lungs dilate to form abnormally large cavities. This phenotype appears before the synthesis and deposition of alveolar elastin, a process mediated by myofibroblasts and initiated after postnatal Day 4. Morphometric analyses demonstrate that the perinatal development of terminal airway branches is arrested in Eln-/- mice. The branching defect is accompanied by fewer distal air sacs that are dilated with attenuated tissue septae, a condition reminiscent of emphysema. Elastin expression in the lung parenchyma before alveogenesis is localized to the mesenchyme surrounding the developing airways, supporting a role for elastin in airway branching. Thus, in addition to its role in the structure and function of the mature lung, elastin is essential for pulmonary development and is important for terminal airway branching.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/fisiología , Alveolos Pulmonares/anomalías , Alveolos Pulmonares/embriología , Tropoelastina/genética , Actinas/análisis , Animales , Animales Recién Nacidos , Mesodermo/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Alveolos Pulmonares/química , Tropoelastina/análisis
10.
Dev Biol ; 222(2): 347-58, 2000 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-10837124

RESUMEN

Following amputation of a urodele limb or teleost fin, the formation of a blastema is a crucial step in facilitating subsequent regeneration. Using the zebrafish caudal fin regeneration model, we have examined the hypothesis that fibroblast growth factors (Fgfs) initiate blastema formation from fin mesenchyme. We find that fibroblast growth factor receptor 1 (fgfr1) is expressed in mesenchymal cells underlying the wound epidermis during blastema formation and in distal blastemal tissue during regenerative outgrowth. fgfr1 transcripts colocalize with those of msxb and msxc, putative markers for undifferentiated, proliferating cells. A zebrafish Fgf member, designated wfgf, is expressed in the regeneration epidermis during outgrowth. Furthermore, we show that a specific inhibitor of Fgfr1 applied immediately following fin amputation blocks blastema formation, without obvious effects on wound healing. This inhibitor blocks the proliferation of blastemal cells and the onset of msx gene transcription. Inhibition of Fgf signaling during ongoing fin regeneration prevents further outgrowth while downregulating the established expression of blastemal msx genes and epidermal sonic hedgehog. Our findings indicate that zebrafish fin blastema formation and regenerative outgrowth require Fgf signaling.


Asunto(s)
Extremidades/fisiología , Factores de Crecimiento de Fibroblastos/fisiología , Proteínas Tirosina Quinasas Receptoras/fisiología , Receptores de Factores de Crecimiento de Fibroblastos/fisiología , Regeneración/fisiología , Amputación Quirúrgica , Animales , Inhibidores Enzimáticos/farmacología , Epidermis/fisiología , Mesodermo/fisiología , Pirroles/farmacología , Proteínas Tirosina Quinasas Receptoras/efectos de los fármacos , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos , Receptores de Factores de Crecimiento de Fibroblastos/efectos de los fármacos , Regeneración/efectos de los fármacos , Transducción de Señal , Pez Cebra
11.
Circulation ; 102(23): 2849-55, 2000 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-11104743

RESUMEN

BACKGROUND: Congenital long-QT syndrome (LQTS) is caused by mutations of genes encoding the slow component of the delayed rectifier current (LQT1, LQT5), the rapid component of the delayed rectifier current (LQT2, LQT6), or the Na(+) current (LQT3), resulting in ST-T-wave abnormalities on the ECG. This study evaluated the spectrum of ST-T-wave patterns and repolarization parameters by genotype and determined whether genotype could be identified by ECG. METHODS AND RESULTS: ECGs of 284 gene carriers were studied to determine ST-T-wave patterns, and repolarization parameters were quantified. Genotypes were identified by individual ECG versus family-grouped ECG analysis in separate studies using ECGs of 146 gene carriers from 29 families and 233 members of 127 families undergoing molecular genotyping, respectively. Ten typical ST-T patterns (4 LQT1, 4 LQT2, and 2 LQT3) were present in 88% of LQT1 and LQT2 carriers and in 65% of LQT3 carriers. Repolarization parameters also differed by genotype. A combination of quantified repolarization parameters identified genotype with sensitivity/specificity of 85%/70% for LQT1, 83%/94% for LQT2, and 47%/63% for LQT3. Typical patterns in family-grouped ECGs best identified the genotype, being correct in 56 of 56 (21 LQT1, 33 LQT2, and 2 LQT3) families with mutation results. CONCLUSIONS: Typical ST-T-wave patterns are present in the majority of genotyped LQTS patients and can be used to identify LQT1, LQT2, and possibly LQT3 genotypes. Family-grouped ECG analysis improves genotype identification accuracy. This approach can simplify genetic screening by targeting the gene for initial study. The multiple ST-T patterns in each genotype raise questions regarding the pathophysiology and regulation of repolarization in LQTS.


Asunto(s)
Electroencefalografía/estadística & datos numéricos , Síndrome de QT Prolongado/congénito , Síndrome de QT Prolongado/diagnóstico , Adolescente , Adulto , Biomarcadores , Niño , Preescolar , Mapeo Cromosómico/estadística & datos numéricos , Diagnóstico Diferencial , Femenino , Expresión Génica , Genotipo , Humanos , Síndrome de QT Prolongado/genética , Masculino , Fenotipo , Sensibilidad y Especificidad
12.
Cell ; 103(7): 1099-109, 2000 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-11163185

RESUMEN

The process of cellular differentiation culminating in terminally differentiated mammalian cells is thought to be irreversible. Here, we present evidence that terminally differentiated murine myotubes can be induced to dedifferentiate. Ectopic expression of msx1 in C2C12 myotubes reduced the nuclear muscle proteins MyoD, myogenin, MRF4, and p21 to undetectable levels in 20%-50% of the myotubes. Approximately 9% of the myotubes cleave to produce either smaller multinucleated myotubes or proliferating, mononucleated cells. Finally, clonal populations of the myotube-derived mononucleated cells can be induced to redifferentiate into cells expressing chondrogenic, adipogenic, myogenic, and osteogenic markers. These results suggest that terminally differentiated mammalian myotubes can dedifferentiate when stimulated with the appropriate signals and that msx1 can contribute to the dedifferentiation process.


Asunto(s)
Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Fibras Musculares Esqueléticas/citología , Fibras Musculares Esqueléticas/fisiología , Células Madre/citología , Factores de Transcripción , Animales , Diferenciación Celular/fisiología , División Celular/fisiología , Células Clonales , Expresión Génica/fisiología , Factor de Transcripción MSX1 , Mamíferos , Ratones , Proteínas Musculares/genética , Regeneración/fisiología , Transducción de Señal/fisiología
13.
Genome Res ; 9(12): 1231-8, 1999 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-10613846

RESUMEN

To assess the level of heterozygosity within two commonly used inbred mapping zebrafish strains, C32 and SJD, we genotyped polymorphic CA-repeat markers randomly dispersed throughout the zebrafish genome. (For clarity purposes we will primarily use the term polymorphic to define polymorphism between strains, and the term heterozygous to address heterogeneity within a strain.) Eight male individuals each from C32 and SJD stocks were typed for 235 and 183 markers, respectively. Over 90% of the markers typed were polymorphic between these two strains. We found a limited number of heterozygous markers persisting in clusters within each inbred line. In the SJD strain, these were mainly limited to a few telomeric regions or regions otherwise distant from centromeres. As expected, centromeric regions were homozygous in the SJD strain, consistent with its derivation from a single half-tetrad individual. In contrast, heterozygous clusters were distributed randomly throughout the genome in the C32 strain, and these clusters could be detected with linked polymorphic markers. Nevertheless, most regions of the C32 strain are homozygous for CA-repeat markers in current stocks. This identification of the heterozygous regions within C32 and SJD lines should permit rapid fixation of these remaining regions in future generations of inbreeding. In addition, we established levels of polymorphism between the inbred, C32 and SJD, strains and three other commonly used strains, the *AB, WIK, and Florida wild type (hereafter referred as EKK), with CA-repeat markers as well as SSCP polymorphisms. These data will maximize the use of these strains in mapping experiments.


Asunto(s)
Polimorfismo Genético/genética , Pez Cebra/genética , Animales , Centrómero/genética , Mapeo Cromosómico , Heterogeneidad Genética , Marcadores Genéticos , Masculino
14.
Am J Physiol ; 277(5): H1745-53, 1999 11.
Artículo en Inglés | MEDLINE | ID: mdl-10564127

RESUMEN

Resistance in blood vessels is directly related to the inner (luminal) diameter (ID). However, ID can be difficult to measure during physiological experiments because of poor transillumination of thick-walled or tightly constricted vessels. We investigated whether the wall cross-sectional area (WCSA) in cannulated arteries is nearly constant, allowing IDs to be calculated from outer diameters (OD) using a single determination of WCSA. With the use of image analysis, OD and ID were directly measured using either transillumination or a fluorescent marker in the lumen. IDs from a variety of vessel types were calculated from WCSA at several reference pressures. Calculated IDs at all of the reference WCSA were within 5% (mean <1%) of the corresponding measured IDs in all vessel types studied, including vessels from heterozygote elastin knockout animals. This was true over a wide range of transmural pressures, during treatment with agonists, and before and after treatment with KCN. In conclusion, WCSA remains virtually constant in cannulated vessels, allowing accurate determination of ID from OD measurement under a variety of experimental conditions.


Asunto(s)
Arterias/anatomía & histología , Cateterismo , Envejecimiento/fisiología , Animales , Animales Recién Nacidos/anatomía & histología , Animales Recién Nacidos/crecimiento & desarrollo , Aorta/anatomía & histología , Arterias/efectos de los fármacos , Técnicas In Vitro , Ratones , Ratones Endogámicos C57BL , Modelos Cardiovasculares , Arteria Pulmonar/anatomía & histología , Vasoconstrictores/farmacología , Vasodilatadores/farmacología
15.
J Biol Chem ; 274(30): 21063-70, 1999 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-10409658

RESUMEN

Long QT syndrome is an inherited disorder of cardiac repolarization caused by mutations in cardiac ion channel genes, including KVLQT1. In this study, the functional consequences of three long QT-associated missense mutations in KvLQT1 (R243C, W248R, E261K) were characterized using the Xenopus oocyte heterologous expression system and two-microelectrode voltage clamp techniques. These mutations are located in or near the intracellular linker between the S4 and S5 transmembrane domains, a region implicated in activation gating of potassium channels. The E261K mutation caused loss of function and did not interact with wild-type KvLQT1 subunits. R243C or W248R KvLQT1 subunits formed functional channels, but compared with wild-type KvLQT1 current, the rate of activation was slower, and the voltage dependence of activation and inactivation was shifted to more positive potentials. Co expression of minK and KvLQT1 channel subunits induces a slow delayed rectifier K(+) current, I(Ks), characterized by slow activation and a markedly increased magnitude compared with current induced by KvLQT1 subunits alone. Coexpression of minK with R243C or W248R KvLQT1 subunits suppressed current, suggesting that coassembly of mutant subunits with minK prevented normal channel gating. The decrease in I(Ks) caused by loss of function or altered gating properties explains the prolonged QT interval and increased risk of arrhythmia and sudden death associated with these mutations in KVLQT1.


Asunto(s)
Activación del Canal Iónico/genética , Síndrome de QT Prolongado/genética , Mutación , Canales de Potasio con Entrada de Voltaje , Canales de Potasio/genética , Animales , Electrofisiología , Expresión Génica , Humanos , Canales de Potasio KCNQ , Canal de Potasio KCNQ1 , Síndrome de QT Prolongado/fisiopatología , Xenopus
16.
J Cardiovasc Electrophysiol ; 10(6): 817-26, 1999 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-10376919

RESUMEN

INTRODUCTION: The long QT syndrome (LQT) is caused by mutations in genes encoding ion channels that modulate the duration of ventricular action potentials. One of these genes, KVLQT1, encodes an alpha subunit that coassembles with another subunit, hminK, to form the cardiac slow delayed rectifier (I(Ks)) K+ channel. METHODS AND RESULTS: The functional effects of seven mutations in KVLQT1 were assessed using two-microelectrode voltage clamp and the Xenopus oocyte expression system. Most mutations in KVLQT1 caused loss of function when expressed alone. Oocytes were also injected with equal amounts of wild-type (WT) KVLQT1 and mutant KVLQT1 cRNA (with or without coinjection of hminK) and the resulting currents compared to currents induced by WT KvLQT1 alone. A341V, R190Q, or G189R KVLQT1 subunits did not affect expression of WT KvLQT1. The other mutations in KVLQT1 caused a variable degree of dominant-negative suppression of I(Ks). The order of potency for this effect was G345E > G306R = V254M > A341E. CONCLUSIONS: LQT1-associated mutations in KVLQT1 caused a spectrum of dysfunction in I(Ks) and KvLQT1 channels. The degree of I(Ks) dysfunction did not correlate with the QTc interval or the presence of symptoms in the respective gene carriers. In contrast to previous reports, we found that loss of function mutations are not exclusive to recessively inherited LQT.


Asunto(s)
Síndrome de QT Prolongado/genética , Mutación Missense , Canales de Potasio con Entrada de Voltaje , Canales de Potasio/genética , Animales , Femenino , Genotipo , Humanos , Canales de Potasio KCNQ , Canal de Potasio KCNQ1 , Síndrome de QT Prolongado/etiología , Fenotipo , Canales de Potasio/fisiología , Xenopus
17.
Cell ; 97(2): 175-87, 1999 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-10219239

RESUMEN

A novel potassium channel gene has been cloned, characterized, and associated with cardiac arrhythmia. The gene encodes MinK-related peptide 1 (MiRP1), a small integral membrane subunit that assembles with HERG, a pore-forming protein, to alter its function. Unlike channels formed only with HERG, mixed complexes resemble native cardiac IKr channels in their gating, unitary conductance, regulation by potassium, and distinctive biphasic inhibition by the class III antiarrhythmic E-4031. Three missense mutations associated with long QT syndrome and ventricular fibrillation are identified in the gene for MiRP1. Mutants form channels that open slowly and close rapidly, thereby diminishing potassium currents. One variant, associated with clarithromycin-induced arrhythmia, increases channel blockade by the antibiotic. A mechanism for acquired arrhythmia is revealed: genetically based reduction in potassium currents that remains clinically silent until combined with additional stressors.


Asunto(s)
Arritmias Cardíacas/metabolismo , Proteínas de Transporte de Catión , Proteínas de Unión al ADN , Canales de Potasio con Entrada de Voltaje , Canales de Potasio/metabolismo , Transactivadores , Secuencia de Aminoácidos , Animales , Arritmias Cardíacas/etiología , Arritmias Cardíacas/genética , Secuencia de Bases , Clonación Molecular , Cartilla de ADN/genética , Canal de Potasio ERG1 , Conductividad Eléctrica , Canales de Potasio Éter-A-Go-Go , Femenino , Humanos , Técnicas In Vitro , Cinética , Síndrome de QT Prolongado/genética , Síndrome de QT Prolongado/metabolismo , Datos de Secuencia Molecular , Mutación Missense , Potasio/metabolismo , Canales de Potasio/química , Canales de Potasio/genética , Conformación Proteica , Ratas , Homología de Secuencia de Aminoácido , Regulador Transcripcional ERG , Xenopus laevis
18.
J Biol Chem ; 274(15): 10113-8, 1999 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-10187793

RESUMEN

Mutations in the human ether-a-go-go-related gene (HERG) cause long QT syndrome, an inherited disorder of cardiac repolarization that predisposes affected individuals to life-threatening arrhythmias. HERG encodes the cardiac rapid delayed rectifier potassium channel that mediates repolarization of ventricular action potentials. In this study, we used the oocyte expression system and voltage clamp techniques to determine the functional consequences of eight long QT syndrome-associated mutations located in the amino-terminal region of HERG (F29L, N33T, G53R, R56Q, C66G, H70R, A78P, and L86R). Mutant subunits formed functional channels with altered gating properties when expressed alone in oocytes. Deactivation was accelerated by all mutations. Some mutants shifted the voltage dependence of channel availability to more positive potentials. Voltage ramps indicated that fast deactivation of mutant channels would reduce outward current during the repolarization phase of the cardiac action potential and cause prolongation of the corrected QT interval, QTc. The amino-terminal region of HERG was recently crystallized and shown to possess a Per-Arnt-Sim (PAS) domain. The location of these mutations suggests they may disrupt the PAS domain and interfere with its interaction with the S4-S5 linker of the HERG channel.


Asunto(s)
Proteínas de Transporte de Catión , Proteínas de Unión al ADN , Síndrome de QT Prolongado/genética , Mutación , Canales de Potasio con Entrada de Voltaje , Canales de Potasio/genética , Homología de Secuencia de Aminoácido , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Canal de Potasio ERG1 , Canales de Potasio Éter-A-Go-Go , Secuencias Hélice-Asa-Hélice , Humanos , Oocitos/metabolismo , Conformación Proteica , Estructura Terciaria de Proteína , Relación Estructura-Actividad , Transactivadores/química , Regulador Transcripcional ERG , Transfección , Xenopus laevis
19.
Hum Genet ; 103(5): 590-9, 1998 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-9860302

RESUMEN

Williams syndrome (WS) is a contiguous gene deletion disorder caused by haploinsufficiency of genes at 7q11.23. We have shown that hemizygosity of elastin is responsible for one feature of WS, supravalvular aortic stenosis (SVAS). We have also implicated LIM-kinase 1 hemizygosity as a contributing factor to impaired visual-spatial constructive cognition in WS. However, the common WS deletion region has not been completely characterized, and genes for additional features of WS, including mental retardation, infantile hypercalcemia, and unique personality profile, are yet to be discovered. Here, we present a physical map encompassing 1.5 Mb DNA that is commonly deleted in individuals with WS. Fluorescence in situ hybridization analysis of 200 WS individuals shows that WS individuals have the consistent deletion interval. In addition, we identify three novel genes from the common deletion region: WS-betaTRP, WS-bHLH, and BCL7B. WS-betaTRP has four putative beta-transducin (WD40) repeats, and WS-bHLH is a novel basic helix-loop-helix leucine zipper (bHLHZip) gene. BCL7B belongs to a novel family of highly conserved genes. We describe the expression profile and genomic structure for each of these genes. Hemizygous deletion of one or more of these genes may contribute to developmental defects in WS.


Asunto(s)
Sondas de ADN/genética , Proteínas de Unión al ADN/genética , Eliminación de Gen , Proteínas de la Membrana/genética , Mapeo Físico de Cromosoma , Proteínas , Síndrome de Williams/genética , Secuencia de Aminoácidos , Secuencia de Bases , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Cromosomas Humanos Par 7/genética , Análisis Mutacional de ADN , Elastina/genética , Proteínas de Unión al GTP , Secuencias Hélice-Asa-Hélice/genética , Humanos , Hibridación Fluorescente in Situ , Repeticiones de Microsatélite/genética , Datos de Secuencia Molecular , Alineación de Secuencia , Análisis de Secuencia de ADN , Transducina/genética
20.
Genomics ; 54(2): 241-9, 1998 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-9828126

RESUMEN

Williams syndrome (WS) is a developmental disorder caused by deletion of multiple genes at chromosome 7q11.23. Here, we report the identification and characterization of a novel gene, WSTF, that maps to the common WS deletion region. WSTF encodes a novel protein of 1425 amino acids with unknown function. It contains one PHD-type zinc finger motif followed by a bromodomain. Both motifs are found in many transcription regulators, suggesting that WSTF may function as a transcription factor. WSTF is ubiquitously expressed in both adult and fetal tissues. The WSTF gene consists of 20 exons spanning about 80 kb. Fluorescence in situ hybridization analysis shows that WSTF is deleted in 50/50 WS individuals. Hemizygous deletion of WSTF may contribute to WS.


Asunto(s)
Eliminación de Gen , Síndrome de Williams/genética , Secuencia de Aminoácidos , Secuencia de Bases , Cromosomas Humanos Par 7/genética , Clonación Molecular , Cartilla de ADN/genética , Exones/genética , Humanos , Hibridación Fluorescente in Situ , Intrones/genética , Datos de Secuencia Molecular , ARN Mensajero/genética , Alineación de Secuencia , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...