Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Adv Mater ; 35(51): e2306396, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37906379

RESUMEN

Cation-disordered rock salts (DRXs) are well known for their potential to realize the goal of achieving scalable Ni- and Co-free high-energy-density Li-ion batteries. Unlike in most cathode materials, the disordered cation distribution may lead to more factors that control the electrochemistry of DRXs. An important variable that is not emphasized by research community is regarding whether a DRX exists in a more thermodynamically stable form or a more metastable form. Moreover, within the scope of metastable DRXs, over-stoichiometric DRXs, which allow relaxation of the site balance constraint of a rock salt structure, are particularly underexplored. In this work, these findings are reported in locating a generally applicable approach to "metastabilize" thermodynamically stable Mn-based DRXs to metastable ones by introducing Li over-stoichiometry. The over-stoichiometric metastabilization greatly stimulates more redox activities, enables better reversibility of Li deintercalation/intercalation, and changes the energy storage mechanism. The metastabilized DRXs can be transformed back to the thermodynamically stable form, which also reverts the electrochemical properties, further contrasting the two categories of DRXs. This work enriches the structural and compositional space of DRX families and adds new pathways for rationally tuning the properties of DRX cathodes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA