Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Dis Model Mech ; 16(8)2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37584388

RESUMEN

High-throughput DNA sequencing studies increasingly associate DNA variants with congenital heart disease (CHD). However, functional modeling is a crucial prerequisite for translating genomic data into clinical care. We used CRISPR-Cas9-mediated targeting of 12 candidate genes in the vertebrate model medaka (Oryzias latipes), five of which displayed a novel cardiovascular phenotype spectrum in F0 (crispants): mapre2, smg7, cdc42bpab, ankrd11 and myrf, encoding a transcription factor recently linked to cardiac-urogenital syndrome. Our myrf mutant line showed particularly prominent embryonic cardiac defects recapitulating phenotypes of pediatric patients, including hypoplastic ventricle. Mimicking human mutations, we edited three sites to generate specific myrf single-nucleotide variants via cytosine and adenine base editors. The Glu749Lys missense mutation in the conserved intramolecular chaperon autocleavage domain fully recapitulated the characteristic myrf mutant phenotype with high penetrance, underlining the crucial function of this protein domain. The efficiency and scalability of base editing to model specific point mutations accelerate gene validation studies and the generation of human-relevant disease models.


Asunto(s)
Edición Génica , Cardiopatías Congénitas , Humanos , Niño , Mutación/genética , Mutación Puntual , Factores de Transcripción/metabolismo , Cardiopatías Congénitas/genética , Sistemas CRISPR-Cas/genética
2.
Nucleic Acids Res ; 51(3): e14, 2023 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-36533445

RESUMEN

CRISPR/Cas-based approaches have largely replaced conventional gene targeting strategies. However, homology-directed repair (HDR) in the mouse genome is not very efficient, and precisely inserting longer sequences using HDR remains challenging given that donor constructs preferentially integrate as concatemers. Here, we showed that injecting 5' biotinylated donor DNA into mouse embryos at the two-cell stage led to efficient single-copy HDR (scHDR) allele generation. Our dedicated genotyping strategy showed that these alleles occurred with frequencies of 19%, 20%, and 26% at three independent gene loci, indicating that scHDR was dramatically increased by 5' biotinylation. Thus, we suggest that the combination of a 5' biotinylated donor and diligent analysis of concatemer integration are prerequisites for efficiently and reliably generating conditional alleles or other large fragment knock-ins in the mouse genome.


Asunto(s)
Embrión de Mamíferos , Edición Génica , Animales , Ratones , Sistemas CRISPR-Cas , ADN , Reparación del ADN por Unión de Extremidades , Edición Génica/métodos , Marcación de Gen , Reparación del ADN por Recombinación
3.
Elife ; 72018 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-30156184

RESUMEN

CRISPR/Cas9 efficiently induces targeted mutations via non-homologous-end-joining but for genome editing, precise, homology-directed repair (HDR) of endogenous DNA stretches is a prerequisite. To favor HDR, many approaches interfere with the repair machinery or manipulate Cas9 itself. Using Medaka we show that the modification of 5' ends of long dsDNA donors strongly enhances HDR, favors efficient single-copy integration by retaining a monomeric donor conformation thus facilitating successful gene replacement or tagging.


Asunto(s)
Sistemas CRISPR-Cas , Reparación del ADN por Unión de Extremidades , ADN/genética , Edición Génica/métodos , Reparación del ADN por Recombinación , Animales , ADN/metabolismo , Embrión no Mamífero/metabolismo , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Modelos Genéticos , Oryzias
4.
Development ; 141(18): 3472-82, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25142461

RESUMEN

The potency of post-embryonic stem cells can only be addressed in the living organism, by labeling single cells after embryonic development and following their descendants. Recently, transplantation experiments involving permanently labeled cells revealed multipotent neural stem cells (NSCs) of embryonic origin in the medaka retina. To analyze whether NSC potency is affected by developmental progression, as reported for the mammalian brain, we developed an inducible toolkit for clonal labeling and non-invasive fate tracking. We used this toolkit to address post-embryonic stem cells in different tissues and to functionally differentiate transient progenitor cells from permanent, bona fide stem cells in the retina. Using temporally controlled clonal induction, we showed that post-embryonic retinal NSCs are exclusively multipotent and give rise to the complete spectrum of cell types in the neural retina. Intriguingly, and in contrast to any other vertebrate stem cell system described so far, long-term analysis of clones indicates a preferential mode of asymmetric cell division. Moreover, following the behavior of clones before and after external stimuli, such as injuries, shows that NSCs in the retina maintained the preference for asymmetric cell division during regenerative responses. We present a comprehensive analysis of individual post-embryonic NSCs in their physiological environment and establish the teleost retina as an ideal model for studying adult stem cell biology at single cell resolution.


Asunto(s)
División Celular/fisiología , Linaje de la Célula/fisiología , Células Madre Multipotentes/fisiología , Células-Madre Neurales/fisiología , Oryzias/fisiología , Retina/citología , Animales , Animales Modificados Genéticamente , Clonación Molecular , Proteínas Fluorescentes Verdes , Integrasas/genética , Integrasas/metabolismo
5.
Development ; 139(5): 917-28, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22318626

RESUMEN

During embryogenesis, tissue specification is triggered by the expression of a unique combination of developmental genes and their expression in time and space is crucial for successful development. Synexpression groups are batteries of spatiotemporally co-expressed genes that act in shared biological processes through their coordinated expression. Although several synexpression groups have been described in numerous vertebrate species, the regulatory mechanisms that orchestrate their common complex expression pattern remain to be elucidated. Here we performed a pilot screen on 560 genes of the vertebrate model system medaka (Oryzias latipes) to systematically identify synexpression groups and investigate their regulatory properties by searching for common regulatory cues. We find that synexpression groups share DNA motifs that are arranged in various combinations into cis-regulatory modules that drive co-expression. In contrast to previous assumptions that these genes are located randomly in the genome, we discovered that genes belonging to the same synexpression group frequently occur in synexpression clusters in the genome. This work presents a first repertoire of synexpression group common signatures, a resource that will contribute to deciphering developmental gene regulatory networks.


Asunto(s)
Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Oryzias/embriología , Oryzias/genética , Animales , Secuencia de Bases , Biología Computacional/métodos , Bases de Datos Factuales , Embrión no Mamífero/anatomía & histología , Embrión no Mamífero/fisiología , Genes Reporteros , Genoma , Datos de Secuencia Molecular , Familia de Multigenes , Motivos de Nucleótidos , Oryzias/anatomía & histología , Sintenía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...