Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Phys Chem A ; 126(16): 2578-2589, 2022 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-35420816

RESUMEN

The extraordinary sensitivity of 129Xe, hyperpolarized by spin-exchange optical pumping, is essential for magnetic resonance imaging and spectroscopy in life and materials sciences. However, fluctuations of the polarization over time still limit the reproducibility and quantification with which the interconnectivity of pore spaces can be analyzed. Here, we present a polarizer that not only produces a continuous stream of hyperpolarized 129Xe but also maintains stable polarization levels on the order of hours, independent of gas flow rates. The polarizer features excellent magnetization production rates of about 70 mL/h and 129Xe polarization values on the order of 40% at moderate system pressures. Key design features include a vertically oriented, large-capacity two-bodied pumping cell and a separate Rb presaturation chamber having its own temperature control, independent of the main pumping cell oven. The separate presaturation chamber allows for precise control of the Rb vapor density by restricting the Rb load and varying the temperature. The polarizer is both compact and transportable─making it easily storable─and adaptable for use in various sample environments. Time-evolved two-dimensional (2D) exchange spectra of 129Xe absorbed in the microporous metal-organic framework CAU-1-AmMe are presented to highlight the quantitative nature of the device.

2.
Langmuir ; 34(42): 12538-12548, 2018 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-30247917

RESUMEN

The sorption properties of metal-organic frameworks (MOFs) can be influenced by introducing covalently attached functional side chains, which make this subclass of porous materials promising for applications as diverse as gas storage and separation, catalysis, and drug delivery. The incorporation of side groups usually comes along with disorder, as the synthesis procedures rarely allow for one specific position among a larger group of equivalent sites to be selected. For a series of isoreticular CAU-1 frameworks, chosen as model compounds, one out of four positions at every linker is modified with equal probability. Here, we investigate the influence of this disorder on Ar sorption and 129Xe nuclear magnetic resonance spectroscopy using hyperpolarized 129Xe gas. Models used for predicting the pore dimensions as well as their distributions were derived from the unfunctionalized framework by replacing one proton at every linker with either an amino, an acetamide, or a methyl urea functionality. The resulting structures were optimized using density functional theory (DFT) calculations. Results from void analyses and Monte Carlo force field simulations suggest that for available Ar nonlocal DFT (NLDFT) kernels, neither the pore dimensions nor the distributions induced by the side-chain disorder are well-reproduced. By contrast, we found the 129Xe chemical shift analysis for the shift observed at high temperature to be well-suited to develop a detailed fingerprint of the porosity and side-chain disorder within the isoreticular CAU-1 series. After calibrating the 129Xe limiting shift of the amino-functionalized framework with DFT calculations, the downfield shifts for the other two derivatives are an excellent measure for the reduction of the accessible pore space and reveal a strong preference for the side chains toward the octahedral voids for both cases. We expect that the strategy presented here can be commonly applied to disorder phenomena within MOFs in the future.

3.
J Am Chem Soc ; 139(2): 904-909, 2017 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-27992224

RESUMEN

Microporous organically pillared layered silicates (MOPS) are a class of microporous hybrid materials that, by varying pillar density, allows for optimization of guest recognition without the need to explore different framework topologies. MOPS are found to be capable of discriminating two very similar gases, carbon dioxide and acetylene, by selective gate-opening solely through quenching pillar dynamics. Contrary to conventional gate-opening in metal organic frameworks, the additional adsorption capacity is realized without macroscopic volume changes, thus avoiding mechanical stress on the framework. Of the two gases studied, only CO2 can accomplish freezing of pillar dynamics. Moreover, the shape of the slit-type micropores in MOPS can easily be fine-tuned by reducing the charge density of the silicate layers. This concomitantly reduces the Coulomb attraction of cationic interlayer space and anionic host layers. Surprisingly, we found that reducing the charge density then alters the gate-opening mechanism to a conventional structural gate-opening involving an increase in volume.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...