Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cells ; 13(12)2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38920625

RESUMEN

Envenomation by the Hypnale hypnale in the Western Ghats of India (particularly in the Malabar region of Kerala) and the subcontinent island nation of Sri Lanka is known to inflict devastating mortality and morbidity. Currently, H. hypnale bites in India are devoid of anti-venom regimens. A detailed characterization of the venom is essential to stress the need for therapeutic anti-venom. Notably, the deleterious effects of this venom on human blood cells have largely remained less explored. Therefore, in continuation of our previous study, in the present study, we envisioned investigating the effect of venom on the morphological and physiological properties of red blood cells (RBCs). The venom readily induced deleterious morphological changes and, finally, the aggregation of washed RBCs. The aggregation process was independent of the ROS and the intracellular Ca2+ ion concentration. Confocal and scanning electron microscopy (SEM) images revealed the loss of biconcave morphology and massive cytoskeletal disarray. Crenation or serrated plasma membrane projections were evenly distributed on the surface of the RBCs. The venom did not cause the formation of methemoglobin in washed RBCs but was significantly induced in whole blood. Venom did not affect glucose uptake and Na+/K+ -ATPase activity but inhibited glucose 6 phosphate dehydrogenase activity and decreased the fluidity of the plasma membrane. Venom-induced RBC aggregates exhibited pro-coagulant activity but without affecting platelet aggregation. In pre-incubation or co-treatment studies, none of the bioactive compounds, such as melatonin, curcumin, fisetin, berberine, and quercetin, sugars such as mannose and galactose, and therapeutic polyvalent anti-venoms (Bharat and VINS) were inhibited, whereas only N-acetylcysteine and H. hypnale monovalent anti-venom could inhibit venom-induced deleterious morphological changes and aggregation of RBCs. In post-treatment studies, paradoxically, none of the bioactives and anti-venoms, including N-acetylcysteine and H. hypnale monovalent anti-venom, reversed the venom-induced RBC aggregates.


Asunto(s)
Acetilcisteína , Venenos de Crotálidos , Eritrocitos , Animales , Humanos , Eritrocitos/efectos de los fármacos , Eritrocitos/metabolismo , Acetilcisteína/farmacología , Agregación Eritrocitaria/efectos de los fármacos , Antivenenos/farmacología , Calcio/metabolismo , Crotalinae , Especies Reactivas de Oxígeno/metabolismo
2.
Biochemistry (Mosc) ; 89(3): 417-430, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38648762

RESUMEN

Platelets are known for their indispensable role in hemostasis and thrombosis. However, alteration in platelet function due to oxidative stress is known to mediate various health complications, including cardiovascular diseases and other health complications. To date, several synthetic molecules have displayed antiplatelet activity; however, their uses are associated with bleeding and other adverse effects. The commercially available curcumin is generally a mixture of three curcuminoids: curcumin, demethoxycurcumin, and bisdemethoxycurcumin. Although crude curcumin is known to inhibit platelet aggregation, the effect of purified curcumin on platelet apoptosis, activation, and aggregation remains unclear. Therefore, in this study, curcumin was purified from a crude curcumin mixture and the effects of this preparation on the oxidative stress-induced platelet apoptosis and activation was evaluated. 2,2'-Azobis(2-methylpropionamidine) dihydrochloride (AAPH) compound was used as an inducer of oxidative stress. Purified curcumin restored AAPH-induced platelet apoptotic markers like reactive oxygen species, intracellular calcium level, mitochondrial membrane potential, cardiolipin peroxidation, cytochrome c release from mitochondria to the cytosol, and phosphatidyl serine externalization. Further, it inhibited the agonist-induced platelet activation and aggregation, demonstrating its antiplatelet activity. Western blot analysis confirms protective effect of the purified curcumin against oxidative stress-induced platelet apoptosis and activation via downregulation of MAPKs protein activation, including ASK1, JNK, and p-38. Together, these results suggest that the purified curcumin could be a potential therapeutic bioactive molecule to treat the oxidative stress-induced platelet activation, apoptosis, and associated complications.


Asunto(s)
Apoptosis , Plaquetas , Curcumina , MAP Quinasa Quinasa Quinasa 5 , Estrés Oxidativo , Curcumina/farmacología , Curcumina/análogos & derivados , Curcumina/química , Apoptosis/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , MAP Quinasa Quinasa Quinasa 5/metabolismo , Humanos , Plaquetas/efectos de los fármacos , Plaquetas/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Activación Plaquetaria/efectos de los fármacos , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Agregación Plaquetaria/efectos de los fármacos
3.
Chem Biodivers ; 21(3): e202301950, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38258537

RESUMEN

The increased expression of VEGFR-2 in a variety of cancer cells promotes a cascade of cellular responses that improve cell survival, growth, and proliferation. Heterocycles are common structural elements in medicinal chemistry and commercially available medications that target several biological pathways and induce cell death in cancer cells. Herein, the evaluation of indazolyl-acyl hydrazones as antioxidant and anticancer agents is reported. Compounds 4e and 4j showed inhibitory activity in free radical scavenging assays (DPPH and FRPA). The titled compounds were employed in cell viability studies using MCF-7 cells, and it was observed that compounds 4f and 4j exhibited IC50 values 15.83 µM and 5.72 µM, respectively. In silico docking revealed the favorable binding energies of -7.30 kcal/mol and -8.04 kcal/mol for these compounds towards Vascular Endothelial Growth Factor Receptor-2 (VEGFR-2), respectively. In conclusion, compounds with antioxidant activity and that target VEGFR-2 in breast cancer cells are reported.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Humanos , Femenino , Estructura Molecular , Relación Estructura-Actividad , Antioxidantes/farmacología , Receptor 2 de Factores de Crecimiento Endotelial Vascular , Neoplasias de la Mama/tratamiento farmacológico , Hidrazonas/farmacología , Factor A de Crecimiento Endotelial Vascular/farmacología , Proliferación Celular , Diseño de Fármacos , Simulación del Acoplamiento Molecular , Antineoplásicos/química , Ensayos de Selección de Medicamentos Antitumorales
4.
Biochim Biophys Acta Mol Basis Dis ; 1869(5): 166688, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36925054

RESUMEN

Cell-free heme (CFH) is a product of hemoglobin, myoglobin and hemoprotein degradation, which is a hallmark of pathologies associated with extensive hemolysis and tissue damage. CHF and iron collectively induce cytokine storm, lung injury, respiratory distress and infection susceptibility in the lungs suggesting their key role in the progression of lung disease pathology. We have previously demonstrated that heme-mediated reactive oxygen species (ROS) induces platelet activation and ferroptosis. However, interaction of ferroptotic platelets and neutrophils, the mechanism of action and associated complications remain unclear. In this study, we demonstrate that heme-induced P-selectin expression and Phosphatidylserine (PS) externalization in platelets via ASK-1-inflammasome axis increases platelet-neutrophil aggregates in circulation, resulting in Neutrophil extracellular traps (NET) formation in vitro and in vivo. Further, heme-induced platelet activation in mice increased platelet-neutrophil aggregates and accumulation of NETs in the lungs causing pulmonary damage. Thus, connecting CFH-mediated platelet activation to NETosis and pulmonary thrombosis. As lung infections induce acute respiratory stress, thrombosis and NETosis, we propose that heme -mediated platelet activation and ferroptosis might be crucial in such clinical manifestations. Further, considering the ability of redox modulators and ferroptosis inhibitors like FS-1, Lpx-1 and DFO to inhibit heme-induced ferroptotic platelets-mediated NETosis and pulmonary thrombosis. They could be potential adjuvant therapy to regulate respiratory distress-associated clinical complications.


Asunto(s)
Ferroptosis , Enfermedades Pulmonares , Síndrome de Dificultad Respiratoria , Trombosis , Ratones , Animales , Hemo , Activación Plaquetaria , Pulmón/patología , Trombosis/patología
5.
Toxicology ; 454: 152742, 2021 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-33662508

RESUMEN

Bisphenol AF, an analogue of Bisphenol A, is an important raw material used in the production of plastic and rubber substances like plastic bottles and containers, toys, and medical supplies. Increased contamination of air, water, dust, and food with BPA/BPAF, poses an enormous threat to humans, globally. BPAF/BPA are endocrine-disrupting chemicals that mimic estrogen hormone, thus increasing the risks of various metabolic and chronic disorders. Exposure of human blood cells to BPA/BPAF induces oxidative stress and genotoxicity. However, its effects on platelets, which play central roles in hemostasis and thrombosis, are not well-documented. In this study, we demonstrate that BPAF induces RIPK1-inflammasome axis-mediated necroptosis in platelets, increasing procoagulant platelet levels in vivo and in vitro. We also show that BPAF-induced rise in procoagulant platelets worsens pulmonary thromboembolism in vivo. The elevated procoagulant platelets are shown to increase platelet-neutrophil/monocyte aggregates that mediate pathogenesis of CVD, thrombosis, and chronic inflammatory diseases. Our results demonstrate the toxic effects of BPAF on platelets and how it propagates the clinical complications by elevating procoagulant platelet numbers. Altogether, our study sends a cautionary message against extensive use of BPAF in the plastic and rubber industries, resulting in frequent human exposure to it, thus endangering platelet functions.


Asunto(s)
Compuestos de Bencidrilo/toxicidad , Plaquetas/efectos de los fármacos , Disruptores Endocrinos/toxicidad , Necroptosis/efectos de los fármacos , Fenoles/toxicidad , Animales , Plaquetas/metabolismo , Femenino , Humanos , Inflamasomas/efectos de los fármacos , Inflamasomas/metabolismo , Masculino , Ratones , Embolia Pulmonar/fisiopatología , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo
6.
Platelets ; 32(7): 960-967, 2021 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-32835559

RESUMEN

Bacterial toxins signaling through Toll-like receptors (TLRs) are implicated in the pathogenesis of many inflammatory diseases. Among the toxins, lipopolysaccharide (LPS) exerts its action via TLR-4 while lipoteichoic acid (LTA) and bacterial lipoproteins such as Braun lipoprotein (BLP) or its synthetic analogue Pam3CSK4 act through TLR-2. Part of the TLR mediated pathogenicity is believed to stem from endogenously biosynthesized platelet-activating factor (PAF)- a potent inflammatory phospholipid acting through PAF-receptor (PAF-R). However, the role of PAF in inflammatory diseases like endotoxemia is controversial. In order to test the direct contribution of PAF in TLR-mediated pathogenicity, we intraperitoneally injected PAF to Wistar albino mice in the presence or absence of bacterial toxins. Intraperitoneal injection of PAF (5 µg/mouse) causes sudden death of mice, that can be delayed by simultaneously or pre-treating the animals with high doses of bacterial toxins- a phenomenon known as endotoxin cross-tolerance. The bacterial toxins- induced tolerance to PAF can be reversed by increasing the concentration of PAF suggesting the reversibility of cross-tolerance. We did similar experiments using human platelets that express both canonical PAF-R and TLRs. Although bacterial toxins did not induce human platelet aggregation, they inhibited PAF-induced platelet aggregation in a reversible manner. Using rabbit platelets that are ultrasensitive to PAF, we found bacterial toxins (LPS and LTA) and Pam3CSK4 causing rabbit platelet aggregation via PAF-R dependent way. The physical interaction of PAF-R and bacterial toxins is also demonstrated in a human epidermal cell line having stable PAF-R expression. Thus, we suggest the possibility of direct physical interaction of bacterial toxins with PAF-R leading to cross-tolerance.


Asunto(s)
Toxinas Bacterianas/metabolismo , Glicoproteínas de Membrana Plaquetaria/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animales , Modelos Animales de Enfermedad , Humanos , Ratones , Transducción de Señal
7.
J Pineal Res ; 69(3): e12676, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32597503

RESUMEN

Melatonin is a chronobiotic hormone, which can regulate human diseases like cancer, atherosclerosis, respiratory disorders, and microbial infections by regulating redox system. Melatonin exhibits innate immunomodulation by communicating with immune system and influencing neutrophils to fight infections and inflammation. However, sustaining redox homeostasis and reactive oxygen species (ROS) generation in neutrophils are critical during chemotaxis, oxidative burst, phagocytosis, and neutrophil extracellular trap (NET) formation. Therefore, endogenous antioxidant glutathione (GSH) redox cycle is highly vital in regulating neutrophil functions. Reduced intracellular GSH levels and glutathione reductase (GR) activity in the neutrophils during clinical conditions like autoimmune disorders, neurological disorders, diabetes, and microbial infections lead to dysfunctional neutrophils. Therefore, we hypothesized that redox modulators like melatonin can protect neutrophil health and functions under GSH and GR activity-deficient conditions. We demonstrate the dual role of melatonin, wherein it protects neutrophils from oxidative stress-induced apoptosis by reducing ROS generation; in contrast, it restores neutrophil functions like phagocytosis, degranulation, and NETosis in GSH and GR activity-deficient neutrophils by regulating ROS levels both in vitro and in vivo. Melatonin mitigates LPS-induced neutrophil dysfunctions by rejuvenating GSH redox system, specifically GR activity by acting as a parallel redox system. Our results indicate that melatonin could be a potential auxiliary therapy to treat immune dysfunction and microbial infections, including virus, under chronic disease conditions by restoring neutrophil functions. Further, melatonin could be a promising immune system booster to fight unprecedented pandemics like the current COVID-19. However, further studies are indispensable to address the clinical usage of melatonin.


Asunto(s)
Antioxidantes/uso terapéutico , Glutatión/metabolismo , Melatonina/uso terapéutico , Neutrófilos/efectos de los fármacos , Animales , Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , Infecciones por Coronavirus/tratamiento farmacológico , Evaluación Preclínica de Medicamentos , Femenino , Glutatión Reductasa/metabolismo , Humanos , Masculino , Melatonina/farmacología , Ratones , Mitocondrias/metabolismo , NADPH Oxidasas/metabolismo , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Tratamiento Farmacológico de COVID-19
8.
Biochim Biophys Acta Gen Subj ; 1864(6): 129561, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32068016

RESUMEN

BACKGROUND: Neutrophils are the first line defense cells of the innate immunity. As a final defense, they discharge their de-condensed chromatin/DNA fibers, the NETs (Neutrophil Extracellular Traps), by a process called NETosis. Two types of NETosis have been currently described: the suicidal/delayed/classical-type, which is ROS dependent that results in the ejection of nuclear DNA, and the vital/rapid/early-type, which may or may not require ROS but, eject nuclear/mitochondrial DNA or both. Thus, Echis carinatus and Naja naja venoms are comparatively studied for their NET inducing property. METHODS: Formation of NETs, cell viability, ROS, and Ca2+ levels are estimated. An in vivo toxicity study and possible cellular signaling have been addressed using immunoblots and pharmacological inhibitors. RESULTS: E. carinatus and N. naja venoms respectively induce suicidal and vital NETosis. E. carinatus venom induces NETosis by activating NOX and PAD-4 enzymes in a ROS dependent manner via PKC/ERK/JNK signaling axis, while N. naja venom does it by activating PAD-4 enzyme, but independent of ROS requirement and as well as PKC/ERK/JNK activation. CONCLUSION: For the first time our study demonstrates the distinct action of E. carinatus and N. naja venoms on the process of NETosis. NETosis being a newly explored area in snake venom pharmacodynamics, it is important to study its impact on the various pathophysiological properties induced by snake venoms. SIGNIFICANCE: Understanding the varied actions of snake venoms on neutrophils/blood cells and the role of DNase are likely to provide insights for better management of snakebite pathophysiology.


Asunto(s)
Venenos Elapídicos/farmacología , Neutrófilos/efectos de los fármacos , Mordeduras de Serpientes/metabolismo , Venenos de Víboras/farmacología , Animales , Venenos Elapídicos/química , Humanos , Mitocondrias/efectos de los fármacos , Mitocondrias/genética , Naja naja/metabolismo , Neutrófilos/patología , Mordeduras de Serpientes/patología , Venenos de Víboras/química
10.
Toxicol In Vitro ; 63: 104743, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31809793

RESUMEN

Curcumin, a major bioactive component of turmeric (Curcuma longa), is known for its multiple health benefits. Curcumin as such is a mixture of its analogs: bisdemethoxycurcumin (BDMC)-3%, and demethoxycurcumin (DMC)-17%. Although the effect of curcumin on platelets is documented, the effect of BDMC and DMC on platelets is less studied. Considering the indispensable role played by platelets in hemostasis, thrombosis, inflammation, and immunity, the present study evaluates the effect of curcumin, DMC and BDMC on platelet apoptosis. The components of curcumin were purified by silica-gel column chromatography. The purity and mass analysis of the purified curcuminoids was determined by RP-HPLC and LC-MS respectively. When analyzed for platelet apoptotic markers, only BDMC demonstrated increased incidence of platelet apoptotic markers including increase in intracellular Ca2+, decrease in ∆ψm, alteration in BCl-2 family proteins, the release of cytochrome c, caspase activation, and PS externalization via activation of ERK activation. ERK inhibitor PD98059 significantly alleviated BDMC induced decrease in ∆ψm, alteration in BCl-2, caspase-8 activation and PS externalization. Our results demonstrate that curcumin, DMC and BDMC differentially act on platelet in inducing apoptosis and the study highlights that the toxicity associated with curcumin therapy might be attributed to BDMC in the mammalian system.


Asunto(s)
Plaquetas/efectos de los fármacos , Diarilheptanoides/toxicidad , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Apoptosis/efectos de los fármacos , Plaquetas/metabolismo , Curcumina/toxicidad , Humanos
11.
Phytomedicine ; 64: 152924, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31465983

RESUMEN

BACKGROUND: Arthritis is a common degenerative joint disease characterized by deterioration of articular cartilage, subchondral bone, and associated with immobility, pain and inflammation. The incessant action of reactive oxygen species (ROS) during progressive arthritis causes severe oxidative damage to vital organs and circulatory system. PURPOSE: In this study we investigated the ability of guggulipid (GL), a lipid rich extract from the gum resin of the plant Commiphora whighitii to suppress the progressive arthritis and associated liver oxidative stress both in vivo and in vitro. STUDY DESIGN/METHODS: The anti-arthritic ability of GL was demonstrated in vitro using IL-1ß stimulated bovine nasal cartilage model and in vivo Freund's complete adjuvant-induced arthritic rat model. Collagen/proteoglycan degradation and pro-inflammatory mediators were monitored in the harvested culture medium of nasal cartilage by estimating the levels of matrix metalloproteinases (MMPs), hydroxy proline, glycosaminoglycans and inflammatory mediators. Further, anti-arthritic ability of GL was evaluated in vivo by measuring enzymatic and non-enzymatic mediators of cartilage degradation, inflammation and oxidative stress markers. RESULTS: GL significantly inhibited the IL-1ß stimulated cartilage degradation in vitro by mitigating the MMPs activity, collagen degradation and secretion of pro-inflammatory mediators. Further, GL significantly reduced the adjuvant-induced paw swelling and body weight loss in vivo. GL remarkably reduced the MMPs and hyaluronidases activities in serum and bone homogenate along with altered hematological parameters. GL also mitigated the elevated bone resorbing enzymes cathepsins, exoglycosidases and phosphatases. Additionally, GL effectively mitigated ROS and oxidative stress-mediators recuperating the altered serum/liver oxidative stress and liver damage incurred during arthritic progression. CONCLUSION: In summary, the study clearly demonstrates the protective efficacy of GL against arthritis and its associated oxidative stress, particularly, liver oxidative damage. Hence, GL could be a potential alternative and complementary medicine to treat inflammatory joint diseases.


Asunto(s)
Antiinflamatorios/farmacología , Artritis Experimental/tratamiento farmacológico , Commiphora/química , Inflamación/tratamiento farmacológico , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/farmacología , Gomas de Plantas/farmacología , Animales , Antiinflamatorios/administración & dosificación , Artritis Experimental/inducido químicamente , Bovinos , Modelos Animales de Enfermedad , Adyuvante de Freund/efectos adversos , Mediadores de Inflamación/metabolismo , Interleucina-1beta/metabolismo , Hígado/efectos de los fármacos , Cartílagos Nasales/efectos de los fármacos , Extractos Vegetales/administración & dosificación , Gomas de Plantas/administración & dosificación , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo
12.
Free Radic Biol Med ; 143: 275-287, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31442556

RESUMEN

Platelet-activating factor (PAF) is a potent inflammatory agonist. In Swiss albino mice, intraperitoneal injection of PAF causes sudden death with oxidative stress and disseminated intravascular coagulation (DIC), characterized by prolonged prothrombin time, thrombocytopenia, reduced fibrinogen content, and increased levels of fibrinogen degradation products. However, the underlying mechanism(s) is unknown. The PAF-R antagonist WEB-2086 protected mice against PAF-induced death by reducing DIC and oxidative stress. Accordingly, general antioxidants such as ascorbic acid, α-tocopherol, gallic acid, and N-acetylcysteine partially protected mice from PAF-induced death. N-acetylcysteine, a clinically used antioxidant, prevented death in 67% of mice, ameliorated DIC characteristics and histological alterations in the liver, and reduced oxidative stress. WEB-2086 suppressed H2O2-mediated oxidative stress in isolated mouse peritoneal macrophages, suggesting that PAF signaling may be a downstream effector of reactive oxygen species generation. PAF stimulated all three (ERK, JNK, and p38) of the MAP-kinases, which were also inhibited by N-acetylcysteine. Furthermore, a JNK inhibitor (SP600125) and ERK inhibitor (SCH772984) partially protected mice against PAF-induced death, whereas a p38 MAP-kinase inhibitor (SB203580) provided complete protection against DIC and death. In human platelets, which have the canonical PAF-R and functional MAP-kinases, JNK and p38 inhibitors abolished PAF-induced platelet aggregation, but the ERK inhibitor was ineffective. Our studies identify p38 MAP-kinase as a critical, but unrecognized component in PAF-induced mortality in mice. These findings suggest an alternative therapeutic strategy to address PAF-mediated pathogenicity, which plays a role in a broad range of inflammatory diseases.


Asunto(s)
Muerte Súbita/prevención & control , Inhibidores Enzimáticos/farmacología , Estrés Oxidativo , Factor de Activación Plaquetaria/toxicidad , Sustancias Protectoras/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores , Acetilcisteína/farmacología , Animales , Muerte Súbita/etiología , Muerte Súbita/patología , Femenino , Depuradores de Radicales Libres/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Especies Reactivas de Oxígeno/metabolismo
13.
Biochim Biophys Acta Mol Basis Dis ; 1865(9): 2303-2316, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31102787

RESUMEN

Reactive oxygen species (ROS) are capable of inducing cell death or apoptosis. Recently, we demonstrated that lipid-ROS can mediate ferroptosis and activation of human platelets. Ferroptosis is an intracellular iron-mediated cell death, distinct from classical apoptosis and necrosis, which is mediated through the accumulation of ROS, lipid peroxides and depletion of cellular GSH. Lately, we demonstrated that hemoglobin degradation product hemin induces ferroptosis in platelets via ROS and lipid peroxidation. In this study, we demonstrate that hemin-induced ferroptosis in platelets is mediated through ROS-driven proteasome activity and inflammasome activation, which were mitigated by Melatonin (MLT). Although inflammasome activation is linked with pyroptosis, it is still not clear whether ferroptosis is associated with inflammasome activation. Our study for the first time demonstrates an association of platelet activation/ferroptosis with proteasome activity and inflammasome activation. Although, high-throughput screening has recognized ferrostatin-1 (Fer-1) and liproxstatin-1 (Lip-1) as potent ferroptosis inhibitors, having an endogenous antioxidant such as MLT as ferroptosis inhibitor is of high interest. MLT is a well-known chronobiotic hormone that regulates the circadian rhythms in vertebrates. It also exhibits potent antioxidant and ROS quenching capabilities. MLT can regulate fundamental cellular functions by exhibiting cytoprotective, oncostatic, antiaging, anti-venom, and immunomodulatory activities. The ROS scavenging capacity of MLT is key for its cytoprotective and anti-apoptotic properties. Considering the anti-ferroptotic and anti-apoptotic potentials of MLT, it could be a promising clinical application to treat hemolytic, thrombotic and thrombocytopenic conditions. Therefore, we propose MLT as a pharmacological and therapeutic agent to inhibit ferroptosis and platelet activation.


Asunto(s)
Ferroptosis/efectos de los fármacos , Hemina/farmacología , Inflamasomas/metabolismo , Melatonina/farmacología , Activación Plaquetaria/efectos de los fármacos , Complejo de la Endopetidasa Proteasomal/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Plaquetas/citología , Plaquetas/metabolismo , Supervivencia Celular/efectos de los fármacos , Citocinas/sangre , Glutatión/metabolismo , Humanos , Masculino , Ratones , Estrés Oxidativo/efectos de los fármacos , Selectina-P/sangre , Complejo de la Endopetidasa Proteasomal/química , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo
14.
Am J Trop Med Hyg ; 100(5): 1043-1048, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30675839

RESUMEN

Snakebite primarily affects rural subsistent farming populations in underdeveloped and developing nations. The annual number of deaths (100,000) and physical disabilities (400,000) of snakebite victims is a societal tragedy that poses a significant added socioeconomic burden to the society. Antivenom therapy is the treatment of choice for snakebite but, as testified by the continuing high rates of mortality and morbidity, too many rural tropical snakebite victims fail to access effective treatment. Here, we advocate for more basic research to better understand the pathogenesis of systemic and local envenoming and describe how research outcomes can identify novel snakebite therapeutic strategies with the potential to be more accessible and affordable to victims than current treatment.


Asunto(s)
Antivenenos/uso terapéutico , Mordeduras de Serpientes/tratamiento farmacológico , Mordeduras de Serpientes/mortalidad , Animales , Desoxirribonucleasa I/uso terapéutico , Países en Desarrollo , Humanos , Dosificación Letal Mediana , Ratones , Morbilidad , Población Rural , Serpientes , Ponzoñas
15.
Platelets ; 30(4): 487-497, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-29799304

RESUMEN

Platelet hyperactivity is the hallmark of thrombosis and hemostasis disorders including atherosclerosis, diabetes, stroke, arthritis, and cancer causing significant mortality and morbidity. Therefore, regulating platelet hyperactivity is an ever growing interest. Very recently, basal autophagic process has been demonstrated to be essential for normal functioning of platelets. However, autophagy can be elevated above basal level under conditions like starvation, and how platelets respond in these settings remains to be elucidative. Therefore, in this study we demonstrate a substantial autophagy induction (above basal level) by starvation, which decreases platelet aggregation responses to various agonists. The decreased aggregation in starved platelets was restored in combination with autophagy inhibitors (3-methyladenine and NH4Cl) and acetate supplementation. Starved platelets also showed decreased calcium mobilization, granule release, and adhesive properties. Furthermore, ex vivo platelets obtained from starved rats showed increased autophagy markers and decreased aggregation responses to various agonists. Our results distinctly explain that enhanced autophagy and cellular energy depletion are the cause for decreased platelet activation and aggregation. The study emphasizes the cardinal role of starvation and autophagy in the management of diseases and disorders associated with platelet hyperactivity.


Asunto(s)
Plaquetas/metabolismo , Agregación Plaquetaria/fisiología , Animales , Autofagia , Humanos , Ratas Wistar
16.
Free Radic Biol Med ; 130: 196-205, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30391673

RESUMEN

Diabetes mellitus (DM) is a serious metabolic disorder affecting millions of people worldwide. The high rate of mortality and morbidity during DM is attributed to the increased atherothrombotic events due to platelet activation and apoptosis leading to macro and micro vascular occlusions. The platelet hyper-reactivity and apoptosis during DM is accounted for the accumulated reactive oxygen species (ROS) due to increased aldose reductase (AR) and NADPH oxidase (NOX) activities. Considering aspirin insensitivity in DM patients, new therapies targeting the underlying mechanism is urgently warranted. Berberine, a benzylisoquinoline alkaloids, from Chinese folk medicine has been demonstrated with several anti-diabetic effects. Therefore, we evaluated whether berberine inhibits high glucose potentiated platelet aggregation, apoptosis and further evaluated the mechanism of its action in platelets. Berberine was found to inhibit platelet aggregation, superoxide production via modulating AR, NOX, and glutathione reductase activities in high glucose (HG) treated platelets. Correlated with this, berberine inhibited, calcium release, ERK activation, α- and dense granule release and platelet adhesive properties. In addition, berberine inhibited p38-p53 mediated BAX activation, mitochondrial dysfunction and platelet apoptosis induced by HG. The platelet protective effect of berberine by inhibiting AR and NOX in high glucose-treated platelets suggest that berberine could be developed as a potential therapeutic molecule in the treating pathologies associated with DM.


Asunto(s)
Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , Arteriopatías Oclusivas/tratamiento farmacológico , Berberina/farmacología , Plaquetas/fisiología , Diabetes Mellitus/tratamiento farmacológico , Agregación Plaquetaria/efectos de los fármacos , Aldehído Reductasa/metabolismo , Plaquetas/efectos de los fármacos , Células Cultivadas , Glucosa/metabolismo , Humanos , Medicina Tradicional China , NADPH Oxidasas/metabolismo , Oxidación-Reducción , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal
17.
Environ Toxicol ; 34(3): 262-270, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30461186

RESUMEN

The catecholic derivative para-tertiary butyl catechol (PTBC) is a conventional antioxidant and polymerization inhibitor, which exhibits melanocytotoxic effects and contact dermatitis often leading to occupational leucoderma or vitiligo. Although numerous industrial workers will be in constant exposure to PTBC and its chances of getting entry into blood are most expected, its effect on blood components is still undisclosed. As platelets play a prominent role in dermatitis, inflammation, and immunity, in this study we have evaluated the effect of PTBC on human platelets in vitro. Exposure of platelets to PTBC showed increased reactive oxygen species (ROS), intracellular calcium, cardiolipin oxidation, mitochondrial permeability transition pore (MPTP) formation, activation of caspases, phosphatidylserine (PS) externalization and decreased mitochondrial membrane potential. In addition, there was a significant decrease in cellular glutathione level, increased γ-glutamyltransferase (GGT) activity and cell death. These findings demonstrate that PTBC could induce toxic effects on blood components, which is often ignored field of research. Since dermal exposure of humans to toxic chemicals covers an important issue in various industries, there is a need of such work to understand and update the long-term toxicities induced by PTBC usage in industrial sectors and public domain.


Asunto(s)
Antioxidantes/toxicidad , Plaquetas/citología , Butanos/toxicidad , Apoptosis/efectos de los fármacos , Plaquetas/efectos de los fármacos , Plaquetas/metabolismo , Caspasas/metabolismo , Glutatión/metabolismo , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , Fosfatidilserinas/metabolismo , Especies Reactivas de Oxígeno/metabolismo
18.
J Lipid Res ; 59(11): 2063-2074, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30139761

RESUMEN

Platelet-activating factor (PAF) is a potent inflammatory mediator that exerts its actions via the single PAF receptor (PAF-R). Cells that biosynthesize alkyl-PAF also make abundant amounts of the less potent PAF analogue acyl-PAF, which competes for PAF-R. Both PAF species are degraded by the plasma form of PAF acetylhydrolase (PAF-AH). We examined whether cogenerated acyl-PAF protects alkyl-PAF from systemic degradation by acting as a sacrificial substrate to enhance inflammatory stimulation or as an inhibitor to dampen PAF-R signaling. In ex vivo experiments both PAF species are prothrombotic in isolation, but acyl-PAF reduced the alkyl-PAF-induced stimulation of human platelets that express canonical PAF-R. In Swiss albino mice, alkyl-PAF causes sudden death, but this effect can also be suppressed by simultaneously administering boluses of acyl-PAF. When PAF-AH levels were incrementally elevated, the protective effect of acyl-PAF on alkyl-PAF-induced death was serially decreased. We conclude that, although acyl-PAF in isolation is mildly proinflammatory, in a pathophysiological setting abundant acyl-PAF suppresses the action of alkyl-PAF. These studies provide evidence for a previously unrecognized role for acyl-PAF as an inflammatory set-point modulator that regulates both PAF-R signaling and hydrolysis.


Asunto(s)
1-Alquil-2-acetilglicerofosfocolina Esterasa/metabolismo , Factor de Activación Plaquetaria/metabolismo , Glicoproteínas de Membrana Plaquetaria/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , 1-Alquil-2-acetilglicerofosfocolina Esterasa/genética , Animales , Azepinas/farmacología , Cromatografía Liquida , Femenino , Voluntarios Sanos , Lisofosfatidilcolinas/metabolismo , Masculino , Espectrometría de Masas , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fosfolípidos/sangre , Fosfolípidos/metabolismo , Agregación Plaquetaria/efectos de los fármacos , Agregación Plaquetaria/genética , Glicoproteínas de Membrana Plaquetaria/antagonistas & inhibidores , Glicoproteínas de Membrana Plaquetaria/genética , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Receptores Acoplados a Proteínas G/genética , Triazoles/farmacología
19.
Toxicol In Vitro ; 52: 286-296, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30016652

RESUMEN

Exposure of human population to industrial chemicals is believed as a significant contributing factor to the outgrowth of occupational diseases especially in developing countries due to improper safety measures and sanitary conditions. Para-tertiary butylcatechol (PTBC) widely employed in petrochemical, thermofax and phototypesetting industries, induces melanocytotoxicity and contact dermatitis leading to occupational leukoderma/vitiligo. Few vitiligo patients were reported for oxidative stress-induced hemolytic anemia and thrombocytopenia, however its impact on blood components is still not clear. Erythrocytes are the major cell population in circulation and play a prominent role in various diseases. In this work, the effect of PTBC on human erythrocytes is evaluated in vitro. PTBC induces oxidative stress-mediated eryptosis (erythrocyte death) causing detrimental changes such as depleted antioxidant levels, altered surface morphology, hemoglobin denaturation and heinz body formation. These findings validate that PTBC could induce toxic effects on human erythrocytes. Exposure of humans to toxic chemicals constitutes an important issue in various industries; one such issue is the exposure of PTBC at work place resulting in a spectrum of dermal complications. Therefore, it is imperative to appraise the long-term toxicities in order to further delineate the mechanisms of resultant disorders associated with PTBC and to establish the therapeutic interventions.


Asunto(s)
Catecoles/toxicidad , Eritrocitos/efectos de los fármacos , Células Cultivadas , Eriptosis/efectos de los fármacos , Eritrocitos/metabolismo , Hemoglobinas/metabolismo , Humanos , Estrés Oxidativo/efectos de los fármacos
20.
ACS Chem Biol ; 13(8): 1996-2002, 2018 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-29869870

RESUMEN

Hemolysis, a process by which the destruction of red blood cells leads to the release of hemoglobin, is a critical event observed during hemolytic disorders. Under oxidative stress conditions, hemoglobin can release its heme prosthetic group, which is highly cytotoxic and can catalyze the generation of reactive oxygen species (ROS), leading to several undesired redox reactions in the cells. Herein, we demonstrate for the first time that heme can mediate the activation and death of human platelets through ferroptosis, which is an iron-dependent form of nonapoptotic cell death. This study also suggests that the heme-mediated lipid peroxidation and ferroptosis in platelets may play an important role in hemolytic disorders.


Asunto(s)
Plaquetas/metabolismo , Muerte Celular/efectos de los fármacos , Hemina/metabolismo , Radical Hidroxilo/metabolismo , Activación Plaquetaria/efectos de los fármacos , Ciclohexilaminas/farmacología , Hemo-Oxigenasa 1/metabolismo , Humanos , Peroxidación de Lípido/efectos de los fármacos , Fenilendiaminas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...