Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomedicines ; 12(1)2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38255304

RESUMEN

Deep vein thrombosis (DVT) is a life-threatening condition that can lead to its sequelae pulmonary embolism (PE) or post-thrombotic syndrome (PTS). Murine models of DVT are frequently used in early-stage disease research and to assess potential therapies. This creates the need for the reliable and easy quantification of blood clots. In this paper, we present a novel high-frequency 3D ultrasound approach for the quantitative evaluation of the volume of DVT in an in vitro model and an in vivo murine model. The proposed method involves the use of a high-resolution ultrasound acquisition system and semiautomatic segmentation of the clot. The measured 3D volume of blood clots was validated to be correlated with in vitro blood clot weights with an R2 of 0.89. Additionally, the method was confirmed with an R2 of 0.91 in the in vivo mouse model with a cylindrical volume from macroscopic measurement. We anticipate that the proposed method will be useful in pharmacological or therapeutic studies in murine models of DVT.

2.
Invest Radiol ; 58(12): 865-873, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37433074

RESUMEN

OBJECTIVES: The objective of this study is to validate the modulated acoustic radiation force (mARF)-based imaging method in the detection of abdominal aortic aneurysm (AAA) in murine models using vascular endothelial growth factor receptor 2 (VEGFR-2)-targeted microbubbles (MBs). MATERIALS AND METHODS: The mouse AAA model was prepared using the subcutaneous angiotensin II (Ang II) infusion combined with the ß-aminopropionitrile monofumarate solution dissolved in drinking water. The ultrasound imaging session was performed at 7 days, 14 days, 21 days, and 28 days after the osmotic pump implantation. For each imaging session, 10 C57BL/6 mice were implanted with Ang II-filled osmotic pumps, and 5 C57BL/6 mice received saline infusion only as the control group. Biotinylated lipid MBs conjugated to either anti-mouse VEGFR-2 antibody (targeted MBs) or isotype control antibody (control MBs) were prepared before each imaging session and were injected into mice via tail vein catheter. Two separate transducers were colocalized to image the AAA and apply ARF to translate MBs simultaneously. After each imaging session, tissue was harvested and the aortas were used for VEGFR-2 immunostaining analysis. From the collected ultrasound image data, the signal magnitude response of the adherent targeted MBs was analyzed, and a parameter, residual-to-saturation ratio ( Rres - sat ), was defined to measure the enhancement in the adherent targeted MBs signal after the cessation of ARF compared with the initial signal intensity. Statistical analysis was performed with the Welch t test and analysis of variance test. RESULTS: The Rres - sat of abdominal aortic segments from Ang II-challenged mice was significantly higher compared with that in the saline-infused control group ( P < 0.001) at all 4 time points after osmotic pump implantation (1 week to 4 weeks). In control mice, the Rres - sat values were 2.13%, 1.85%, 3.26%, and 4.85% at 1, 2, 3, and 4 weeks postimplantation, respectively. In stark contrast, the Rres - sat values for the mice with Ang II-induced AAA lesions were 9.20%, 20.6%, 22.7%, and 31.8%, respectively. It is worth noting that there was a significant difference between the Rres - sat for Ang II-infused mice at all 4 time points ( P < 0.005), a finding not present in the saline-infused mice. Immunostaining results revealed the VEGFR-2 expression was increased in the abdominal aortic segments of Ang II-infused mice compared with the control group. CONCLUSIONS: The mARF-based imaging technique was validated in vivo using a murine model of AAA and VEGFR-2-targeted MBs. Results in this study indicated that the mARF-based imaging technique has the ability to detect and assess AAA growth at early stages based on the signal intensity of adherent targeted MBs, which is correlated with the expression level of the desired molecular biomarker. The results may suggest, in very long term, a pathway toward eventual clinical implementation for an ultrasound molecular imaging-based approach to AAA risk assessment in asymptomatic patients.


Asunto(s)
Aneurisma de la Aorta Abdominal , Receptor 2 de Factores de Crecimiento Endotelial Vascular , Animales , Humanos , Ratones , Acústica , Aneurisma de la Aorta Abdominal/inducido químicamente , Aneurisma de la Aorta Abdominal/diagnóstico por imagen , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Microburbujas , Factor A de Crecimiento Endotelial Vascular
3.
Bioact Mater ; 26: 52-63, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36875050

RESUMEN

Abdominal aortic aneurysm (AAA) is a progressive aortic dilatation, causing ∼80% mortality upon rupture. Currently, there is no approved drug therapy for AAA. Surgical repairs are invasive and risky and thus not recommended to patients with small AAAs which, however, account for ∼90% of the newly diagnosed cases. It is therefore a compelling unmet clinical need to discover effective non-invasive strategies to prevent or slow down AAA progression. We contend that the first AAA drug therapy will only arise through discoveries of both effective drug targets and innovative delivery methods. There is substantial evidence that degenerative smooth muscle cells (SMCs) orchestrate AAA pathogenesis and progression. In this study, we made an exciting finding that PERK, the endoplasmic reticulum (ER) stress Protein Kinase R-like ER Kinase, is a potent driver of SMC degeneration and hence a potential therapeutic target. Indeed, local knockdown of PERK in elastase-challenged aorta significantly attenuated AAA lesions in vivo. In parallel, we also conceived a biomimetic nanocluster (NC) design uniquely tailored to AAA-targeting drug delivery. This NC demonstrated excellent AAA homing via a platelet-derived biomembrane coating; and when loaded with a selective PERK inhibitor (PERKi, GSK2656157), the NC therapy conferred remarkable benefits in both preventing aneurysm development and halting the progression of pre-existing aneurysmal lesions in two distinct rodent models of AAA. In summary, our current study not only establishes a new intervention target for mitigating SMC degeneration and aneurysmal pathogenesis, but also provides a powerful tool to facilitate the development of effective drug therapy of AAA.

4.
Front Cardiovasc Med ; 9: 949262, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36211542

RESUMEN

Abdominal aortic aneurysm (AAA) is a prevalent vascular disease with high mortality rates upon rupture. Despite its prevalence in elderly populations, there remain limited treatment options; invasive surgical repair, while risky, is the only therapeutic intervention with proven clinical benefits. Dietary factors have long been suggested to be closely associated with AAA risks, and dietary therapies recently emerged as promising avenues to achieve non-invasive management of a wide spectrum of diseases. However, the role of dietary therapies in AAA remains elusive. In this article, we will summarize the recent clinical and pre-clinical efforts in understanding the therapeutic and mechanistic implications of various dietary patterns and therapeutic approaches in AAA.

5.
Front Cardiovasc Med ; 9: 950018, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36035911

RESUMEN

Abdominal aortic aneurysm (AAA) is a focal dilation of the aorta that is prevalent in aged populations. The progressive and unpredictable expansion of AAA could result in aneurysmal rupture, which is associated with ~80% mortality. Due to the expanded screening efforts and progress in diagnostic tools, an ever-increasing amount of asymptomatic AAA patients are being identified yet without a cure to stop the rampant aortic expansion. A key barrier that hinders the development of effective AAA treatment is our incomplete understanding of the cellular and molecular basis of its pathogenesis and progression into rupture. Animal models provide invaluable mechanistic insights into AAA pathophysiology. However, there is no single experimental model that completely recapitulate the complex biology behind AAA, and different AAA-inducing methodologies are associated with distinct disease course and rupture rate. In this review article, we summarize the established murine models of ruptured AAA and discuss their respective strengths and utilities.

6.
J Control Release ; 338: 295-306, 2021 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-34416322

RESUMEN

The long-term success of endovascular intervention has long been overshadowed by vessel re-occlusion, also known as restenosis. Mainstream anti-restenotic devices, such as drug-eluting stent (DES) and drug-coated balloon (DCB), were recently shown with suboptimal performances and life-threatening complications, thereby underpinning the urgent need for alternative strategies with enhanced efficacy and safety profile. In our current study, we engineered a multimodal nanocluster formed by self-assembly of unimolecular nanoparticles and surface coated with platelet membrane, specifically tailored for precision drug delivery in endovascular applications. More specifically, it incorporates the combined merits of platelet membrane coating (lesion targetability and biocompatibility), reactive oxygen species (ROS)-detonable "cluster-bomb" chemistry (to trigger the large-to-small size transition at the target site, thereby achieving longer circulation time and higher tissue penetration), and sustained drug release. Using RVX-208 (an emerging anti-restenotic drug under clinical trials) as the model payload, we demonstrated the superior performances of our nanocluster over conventional poly(lactic-co-glycolic acid) (PLGA) nanoparticle. In cultured vascular smooth muscle cell (VSMC), the drug-loaded nanocluster induced effective inhibition of proliferation and protective gene expression (e.g., APOA-I) with a significantly reduced dosage of RVX-208 (1 µM). In a rat model of balloon angioplasty, intravenous injection of Cy5.5-tagged nanocluster led to greater lesion targetability, improved biodistribution, and deeper penetration into injured vessel walls featuring enriched ROS. Moreover, in contrast to either free drug solution or drug-loaded PLGA nanoparticle formulation, a single injection with the drug-loaded nanocluster (10 mg/kg of RVX-208) was sufficient to substantially mitigate restenosis. Additionally, this nanocluster also demonstrated biocompatibility according to in vitro cytotoxicity assay and in vivo histological and tissue qPCR analysis. Overall, our multimodal nanocluster offers improved targetability, tissue penetration, and ROS-responsive release over conventional nanoparticles, therefore making it a highly promising platform for development of next-generation endovascular therapies.


Asunto(s)
Reestenosis Coronaria , Stents Liberadores de Fármacos , Animales , Biomimética , Materiales Biocompatibles Revestidos , Ratas , Especies Reactivas de Oxígeno , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...