Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Chem Phys ; 152(18): 184202, 2020 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-32414242

RESUMEN

High-field nuclear magnetic resonance (NMR) spectroscopy is an indispensable technique for identification and characterization of chemicals and biomolecular structures. In the vast majority of NMR experiments, nuclear spin polarization arises from thermalization in multi-Tesla magnetic fields produced by superconducting magnets. In contrast, NMR instruments operating at low magnetic fields are emerging as a compact, inexpensive, and highly accessible alternative but suffer from low thermal polarization at a low field strength and consequently a low signal. However, certain hyperpolarization techniques create high polarization levels on target molecules independent of magnetic fields, giving low-field NMR a significant sensitivity boost. In this study, SABRE (Signal Amplification By Reversible Exchange) was combined with high homogeneity electromagnets operating at mT fields, enabling high resolution 1H, 13C, 15N, and 19F spectra to be detected with a single scan at magnetic fields between 1 mT and 10 mT. Chemical specificity is attained at mT magnetic fields with complex, highly resolved spectra. Most spectra are in the strong coupling regime where J-couplings are on the order of chemical shift differences. The spectra and the hyperpolarization spin dynamics are simulated with SPINACH. The simulations start from the parahydrogen singlet in the bound complex and include both chemical exchange and spin evolution at these mT fields. The simulations qualitatively match the experimental spectra and are used to identify the spin order terms formed during mT SABRE. The combination of low field NMR instruments with SABRE polarization results in sensitive measurements, even for rare spins with low gyromagnetic ratios at low magnetic fields.

2.
Rev Sci Instrum ; 88(9): 091101, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28964224

RESUMEN

We review experimental techniques in our laboratory for nuclear magnetic resonance (NMR) in zero and ultralow magnetic field (below 0.1 µT) where detection is based on a low-cost, non-cryogenic, spin-exchange relaxation free 87Rb atomic magnetometer. The typical sensitivity is 20-30 fT/Hz1/2 for signal frequencies below 1 kHz and NMR linewidths range from Hz all the way down to tens of mHz. These features enable precision measurements of chemically informative nuclear spin-spin couplings as well as nuclear spin precession in ultralow magnetic fields.

3.
J Phys Chem Lett ; 8(7): 1512-1516, 2017 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-28291363

RESUMEN

We present a two-dimensional method for obtaining 13C-decoupled, 1H-coupled nuclear magnetic resonance (NMR) spectra in zero magnetic field using coherent spin-decoupling. The result is a spectrum determined only by the proton-proton J-coupling network. Detection of NMR signals in zero magnetic field requires at least two different nuclear spin species, but the proton J-spectrum is independent of isotopomer, thus potentially simplifying spectra and thereby improving the analytical capabilities of zero-field NMR. The protocol does not rely on a difference in Larmor frequency between the coupled nuclei, allowing for the direct determination of J-coupling constants between chemically equivalent spins. We obtain the 13C-decoupled zero-field spectrum of [1-13C]-propionic acid and identify conserved quantum numbers governing the appearance of cross peaks in the two-dimensional spectrum.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...