Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 7: 13251, 2016 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-27827361

RESUMEN

Multipartite entangled states are a fundamental resource for a wide range of quantum information processing tasks. In particular, in quantum networks, it is essential for the parties involved to be able to verify if entanglement is present before they carry out a given distributed task. Here we design and experimentally demonstrate a protocol that allows any party in a network to check if a source is distributing a genuinely multipartite entangled state, even in the presence of untrusted parties. The protocol remains secure against dishonest behaviour of the source and other parties, including the use of system imperfections to their advantage. We demonstrate the verification protocol in a three- and four-party setting using polarization-entangled photons, highlighting its potential for realistic photonic quantum communication and networking applications.


Asunto(s)
Diseño Asistido por Computadora , Procesamiento Automatizado de Datos/métodos , Fotones , Teoría Cuántica , Algoritmos , Humanos , Modelos Teóricos
2.
Phys Rev Lett ; 106(22): 220501, 2011 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-21702585

RESUMEN

In the distrustful quantum cryptography model the parties have conflicting interests and do not trust one another. Nevertheless, they trust the quantum devices in their labs. The aim of the device-independent approach to cryptography is to do away with the latter assumption, and, consequently, significantly increase security. It is an open question whether the scope of this approach also extends to protocols in the distrustful cryptography model, thereby rendering them "fully" distrustful. In this Letter, we show that for bit commitment-one of the most basic primitives within the model-the answer is positive. We present a device-independent (imperfect) bit-commitment protocol, where Alice's and Bob's cheating probabilities are ≃0.854 and 3/4, which we then use to construct a device-independent coin flipping protocol with bias ≲0.336.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA