Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(9): e2312987121, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38377214

RESUMEN

Babesiosis is an emerging zoonosis and widely distributed veterinary infection caused by 100+ species of Babesia parasites. The diversity of Babesia parasites and the lack of specific drugs necessitate the discovery of broadly effective antibabesials. Here, we describe a comparative chemogenomics (CCG) pipeline for the identification of conserved targets. CCG relies on parallel in vitro evolution of resistance in independent populations of Babesia spp. (B. bovis and B. divergens). We identified a potent antibabesial, MMV019266, from the Malaria Box, and selected for resistance in two species of Babesia. After sequencing of multiple independently derived lines in the two species, we identified mutations in a membrane-bound metallodependent phosphatase (phoD). In both species, the mutations were found in the phoD-like phosphatase domain. Using reverse genetics, we validated that mutations in bdphoD confer resistance to MMV019266 in B. divergens. We have also demonstrated that BdPhoD localizes to the endomembrane system and partially with the apicoplast. Finally, conditional knockdown and constitutive overexpression of BdPhoD alter the sensitivity to MMV019266 in the parasite. Overexpression of BdPhoD results in increased sensitivity to the compound, while knockdown increases resistance, suggesting BdPhoD is a pro-susceptibility factor. Together, we have generated a robust pipeline for identification of resistance loci and identified BdPhoD as a resistance mechanism in Babesia species.


Asunto(s)
Antiinfecciosos , Babesia , Babesiosis , Humanos , Babesia/genética , Fosfatasa Alcalina , Antiparasitarios/farmacología , Antiparasitarios/uso terapéutico , Babesiosis/tratamiento farmacológico , Babesiosis/parasitología , Genómica , Antiinfecciosos/farmacología
2.
bioRxiv ; 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37398106

RESUMEN

Babesiosis is an emerging zoonosis and widely distributed veterinary infection caused by 100+ species of Babesia parasites. The diversity of Babesia parasites, coupled with the lack of potent inhibitors necessitates the discovery of novel conserved druggable targets for the generation of broadly effective antibabesials. Here, we describe a comparative chemogenomics (CCG) pipeline for the identification of novel and conserved targets. CCG relies on parallel in vitro evolution of resistance in independent populations of evolutionarily-related Babesia spp. ( B. bovis and B. divergens ). We identified a potent antibabesial inhibitor from the Malaria Box, MMV019266. We were able to select for resistance to this compound in two species of Babesia, achieving 10-fold or greater resistance after ten weeks of intermittent selection. After sequencing of multiple independently derived lines in the two species, we identified mutations in a single conserved gene in both species: a membrane-bound metallodependent phosphatase (putatively named PhoD). In both species, the mutations were found in the phoD-like phosphatase domain, proximal to the predicted ligand binding site. Using reverse genetics, we validated that mutations in PhoD confer resistance to MMV019266. We have also demonstrated that PhoD localizes to the endomembrane system and partially with the apicoplast. Finally, conditional knockdown and constitutive overexpression of PhoD alter the sensitivity to MMV019266 in the parasite: overexpression of PhoD results in increased sensitivity to the compound, while knockdown increases resistance, suggesting PhoD is a resistance mechanism. Together, we have generated a robust pipeline for identification of resistance loci, and identified PhoD as a novel determinant of resistance in Babesia species. Highlights: Use of two species for in vitro evolution identifies a high confidence locus associated with resistance Resistance mutation in phoD was validated using reverse genetics in B. divergens Perturbation of phoD using function genetics results in changes in the level of resistance to MMV019266Epitope tagging reveals localization to the ER/apicoplast, a conserved localization with a similar protein in diatoms Together, phoD is a novel resistance determinant in multiple Babesia spp .

3.
Curr Opin Microbiol ; 70: 102223, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36274498

RESUMEN

Quiescence is a reversible nonproliferative cellular state that allows organisms to persist through unfavorable conditions. Quiescence can be stimulated by a wide range of external or intrinsic factors. Cells undergo a coordinated molecular program to enter and exit from the quiescent state, which is governed by signaling, transcriptional and translational changes, epigenetic mechanisms, metabolic switches, and changes in cellular architecture. These mechanisms have been extensively studied in model organisms, and a growing number of studies have identified conserved mechanisms in apicomplexan parasites. Quiescence in the context of a parasitic infection has significant clinical impact: quiescent forms may underlie treatment failures, relapsing infections, and stress tolerance. Here, we review the latest understanding of quiescence in apicomplexa, synthesizing these studies to highlight conserved mechanisms, and identifying technologies to assist in further characterization of quiescence. Understanding conserved mechanisms of quiescence in apicomplexans will provide avenues for transmission prevention and radical cure of infections.


Asunto(s)
Parásitos , Animales , División Celular , Transducción de Señal , Epigénesis Genética , Procesamiento Proteico-Postraduccional
4.
PLoS Biol ; 20(9): e3001816, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36137068

RESUMEN

Babesia is a genus of apicomplexan parasites that infect red blood cells in vertebrate hosts. Pathology occurs during rapid replication cycles in the asexual blood stage of infection. Current knowledge of Babesia replication cycle progression and regulation is limited and relies mostly on comparative studies with related parasites. Due to limitations in synchronizing Babesia parasites, fine-scale time-course transcriptomic resources are not readily available. Single-cell transcriptomics provides a powerful unbiased alternative for profiling asynchronous cell populations. Here, we applied single-cell RNA sequencing to 3 Babesia species (B. divergens, B. bovis, and B. bigemina). We used analytical approaches and algorithms to map the replication cycle and construct pseudo-synchronized time-course gene expression profiles. We identify clusters of co-expressed genes showing "just-in-time" expression profiles, with gradually cascading peaks throughout asexual development. Moreover, clustering analysis of reconstructed gene curves reveals coordinated timing of peak expression in epigenetic markers and transcription factors. Using a regularized Gaussian graphical model, we reconstructed co-expression networks and identified conserved and species-specific nodes. Motif analysis of a co-expression interactome of AP2 transcription factors identified specific motifs previously reported to play a role in DNA replication in Plasmodium species. Finally, we present an interactive web application to visualize and interactively explore the datasets.


Asunto(s)
Babesia , Babesia/genética , Eritrocitos/parasitología , Factores de Transcripción/genética , Transcriptoma/genética
5.
Artículo en Inglés | MEDLINE | ID: mdl-32582569

RESUMEN

Cellular reproduction defines life, yet our textbook-level understanding of cell division is limited to a small number of model organisms centered around humans. The horizon on cell division variants is expanded here by advancing insights on the fascinating cell division modes found in the Apicomplexa, a key group of protozoan parasites. The Apicomplexa display remarkable variation in offspring number, whether karyokinesis follows each S/M-phase or not, and whether daughter cells bud in the cytoplasm or bud from the cortex. We find that the terminology used to describe the various manifestations of asexual apicomplexan cell division emphasizes either the number of offspring or site of budding, which are not directly comparable features and has led to confusion in the literature. Division modes have been primarily studied in two human pathogenic Apicomplexa, malaria-causing Plasmodium spp. and Toxoplasma gondii, a major cause of opportunistic infections. Plasmodium spp. divide asexually by schizogony, producing multiple daughters per division round through a cortical budding process, though at several life-cycle nuclear amplifications stages, are not followed by karyokinesis. T. gondii divides by endodyogeny producing two internally budding daughters per division round. Here we add to this diversity in replication mechanisms by considering the cattle parasite Babesia bigemina and the pig parasite Cystoisospora suis. B. bigemina produces two daughters per division round by a "binary fission" mechanism whereas C. suis produces daughters through both endodyogeny and multiple internal budding known as endopolygeny. In addition, we provide new data from the causative agent of equine protozoal myeloencephalitis (EPM), Sarcocystis neurona, which also undergoes endopolygeny but differs from C. suis by maintaining a single multiploid nucleus. Overall, we operationally define two principally different division modes: internal budding found in cyst-forming Coccidia (comprising endodyogeny and two forms of endopolygeny) and external budding found in the other parasites studied (comprising the two forms of schizogony, binary fission and multiple fission). Progressive insights into the principles defining the molecular and cellular requirements for internal vs. external budding, as well as variations encountered in sexual stages are discussed. The evolutionary pressures and mechanisms underlying apicomplexan cell division diversification carries relevance across Eukaryota.


Asunto(s)
Toxoplasma , Animales , Bovinos , División Celular , Núcleo Celular , Caballos , Estadios del Ciclo de Vida , Porcinos
6.
Int J Parasitol Parasites Wildl ; 12: 85-92, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32489853

RESUMEN

Parafilaroides decorus, also known as sea lion lungworm, is a metastrongyloid nematode that infects otariid hosts, such as the charismatic California sea lion, Zalophus californianus. P. decorus causes bronchointerstitial pneumonia, respiratory distress, reduced ability to swim, dive and hunt and as a result, increased mortality particularly in young animals. Respiratory disease is a leading cause of stranding and admission to rehabilitation centers on the Pacific coast. Low-coverage genomic sequencing of four P. decorus individuals analyzed through Galaxy's RepeatExplorer identified a novel repeat DNA family we employed to design a sensitive quantitative PCR (qPCR) assay for diagnosing infections from fecal or sputum samples. The assay detects as little as 10 fg of P. decorus DNA and a linear regression model developed using a standard curve can be used to estimate the concentration of P. decorus DNA in a sample, ± 0.015 ng. This knowledge can be leveraged to estimate the level of parasite burden, which can be used to design improved treatments for animals in rehabilitation. Improved treatment of infections will aid in more animals being successfully released back into the wild.

7.
Trends Parasitol ; 35(5): 333-335, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31003757

RESUMEN

The malaria parasite must digest host cytoplasm for normal growth, and many studies have revealed the essential role of proteases in hemoglobin digestion. Here, we discuss the results of Jonscher et al. (Cell Host Microbe 2019;25:166-173) who have, for the first time, identified a molecule, VPS45, involved in the uptake and trafficking of host cytoplasm to the digestive vacuole.


Asunto(s)
Malaria , Parásitos , Animales , Citoplasma , Citosol , Plasmodium falciparum , Vacuolas
8.
Int J Parasitol ; 49(2): 153-163, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30391230

RESUMEN

Babesia parasites infect a diverse range of vertebrate hosts, from penguins to pigs. Recently, the emergence of zoonotic Babesia infection has been increasing, and the list of species reported to infect humans continues to grow. Babesiosis represents a burgeoning veterinary and medical threat, and the need for novel therapeutic drugs to effectively target this diverse group of parasites is pressing. Here, we review the current culture systems that exist to study and manipulate Babesia parasites, and identify the scope and methods for target discovery and validation to identify novel, potent anti-babesial inhibitors. Challenges exist including difficulties in the culture systems of important zoonotic parasites, and there is a lack of integrated morphological and molecular data. While molecular approaches in several Babesia spp. has become a reality, the ability to rapidly identify and validate drug targets is hindered by a lack of sophisticated genetic tools to probe parasite biology. The minimal genome size and haploid nature of blood-stage Babesia parasites presents an opportunity to adapt techniques from related systems and characterise the druggable genomic space in a high-throughput way. The considerable diversity of parasites within the genus suggests the existence of highly divergent biology and polymorphism that could present a formidable barrier to the development of a pan-babesiacidal therapeutic strategy.


Asunto(s)
Antiprotozoarios/aislamiento & purificación , Antiprotozoarios/farmacología , Babesia/efectos de los fármacos , Babesia/genética , Descubrimiento de Drogas/métodos , Genética Microbiana/métodos , Desarrollo de Medicamentos , Humanos
9.
Int J Parasitol Parasites Wildl ; 7(2): 147-154, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29988808

RESUMEN

The distinct evolutionary pressures faced by Pinnipeds have likely resulted in strong coevolutionary ties to their parasites (Leidenberger et al., 2007). This study focuses on the phocid seal filarial heartworm species Acanthocheilonema spirocauda. A. spirocauda is known to infect a variety of phocid seals, but does not appear to be restricted to a single host species (Measures et al., 1997; Leidenberger et al., 2007; Lehnert et al., 2015). However, to date, seal heartworm has never been reported in grey seals (Halichoerus grypus) (Measures et al., 1997; Leidenberger et al., 2007; Lehnert et al., 2015). The proposed vector for seal heartworm is Echinophthirius horridus, the seal louse. Seal lice are known to parasitize a wide array of phocid seal species, including the grey seal. With the advent of climate change, disease burden is expected to increase across terrestrial and marine mammals (Harvell et al., 2002). Accordingly, increased prevalence of seal heartworm has recently been reported in harbor seals (Phoca vitulina) (Lehnert et al., 2015). Thus, the need for improved, rapid, and cost-effective diagnostics is urgent. Here we present the first A. spirocauda-specific rapid diagnostic test (a quantitative real-time PCR assay), based on a highly repetitive genomic DNA repeat identified using whole genome sequencing and subsequent bioinformatic analysis. The presence of an insect vector provides the opportunity to develop a multifunctional diagnostic tool that can be used not only to detect the parasite directly from blood or tissue specimens, but also as a molecular xenomonitoring (XM) tool that can be used to assess the epidemiological profile of the parasite by screening the arthropod vector. Using this assay, we provide evidence for the first reported case of seal heartworm in a grey seal.

10.
J Parasitol ; 102(3): 312-8, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26859724

RESUMEN

The symbiotic relationship of Wolbachia spp. was first observed in insects and subsequently in many parasitic filarial nematodes. This bacterium is believed to provide metabolic and developmental assistance to filarial parasitic nematodes, although the exact nature of this relationship remains to be fully elucidated. While Wolbachia is present in most filarial nematodes in the family Onchocercidae, it is absent in several disparate species such as the human parasite Loa loa . All tested members of the genus Acanthocheilonema, such as Acanthocheilonema viteae, have been shown to lack Wolbachia. Consistent with this, we show that Wolbachia is absent from the seal heartworm (Acanthocheilonema spirocauda), but lateral gene transfer (LGT) of DNA sequences between Wolbachia and A. spirocauda has occurred, indicating a past evolutionary association. Seal heartworm is an important pathogen of phocid seals and understanding its basic biology is essential for conservation of the host. The findings presented here may allow for the development of future treatments or diagnostics for the disease and also aid in clarification of the complicated nematode-Wolbachia relationship.


Asunto(s)
Acanthocheilonema/microbiología , Acantoqueilonemiasis/veterinaria , Transferencia de Gen Horizontal , Phoca/parasitología , Wolbachia/genética , Acanthocheilonema/genética , Acantoqueilonemiasis/microbiología , Acantoqueilonemiasis/parasitología , Animales , Evolución Biológica , Western Blotting , Código de Barras del ADN Taxonómico , ADN de Helmintos/química , ADN de Helmintos/aislamiento & purificación , Femenino , Transferencia de Gen Horizontal/fisiología , Hidroximetilbilano Sintasa/genética , Filogenia , Reacción en Cadena de la Polimerasa/métodos , Seudogenes , Análisis de Secuencia de ADN , Simbiosis , Wolbachia/inmunología , Wolbachia/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...