Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 9(33): 35873-35887, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39184507

RESUMEN

The structure and stability of charge-coupled lanthanide-substituted Ca10(PO4)6F2 as a potential fluoride-bearing nuclear waste form for the back-end fuel cycle of Gen-IV molten salt reactor have been studied in detail. Here, calcium fluorapatite (CaFAp) as a model structure was taken for incorporation of trivalent lanthanides (Lns, La-Lu except Pm) in a charge-coupled fashion, i.e., 2Ca2+ = Na+ + Ln3+. In these fluorapatite phases, Na+ is substituted exclusively at nine coordinated sites, Ca1, while Ln3+ is preferentially substituted at seven coordinated sites, Ca2. These compositions are further characterized for the local structure by Fourier transform infrared (FTIR) and Raman spectroscopy. Thermal expansion was measured by high-temperature X-ray diffraction (XRD) and the instantaneous thermal expansion coefficient correlates well with the unsubstituted CaFAp. The heat capacities of these solids were measured by differential scanning calorimetry and drop calorimetry, whereas enthalpies of formation were obtained by high-temperature oxide melt solution calorimetry. The thermodynamic analysis demonstrated that lanthanides having ionic radii closure to Ca2+ (Sm3+ and Gd3+) imparted higher thermodynamic stability to the substituted CaFAp as compared to that of other Ln3+. According to structural and thermodynamic investigations, entropy-stabilized fluorapatite waste from NaPr0.125Nd0.125Sm0.125Eu0.125Gd0.125Tb0.125Dy0.125Ho0.125Ca8(PO4)6F2 (WF-Ln) was successfully synthesized for the first time. Furthermore, electron beam irradiation studies probed by XRD, FTIR, Raman, and X-ray absorption (XAS) spectroscopy implied the radiation resistance nature of this substituted CaFAps up to 20 MGy.

2.
ACS Omega ; 7(3): 3099-3108, 2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-35097305

RESUMEN

The effect of high pressure on the structure of orthorhombic Mn3(VO4)2 is investigated using in situ Raman spectroscopy and X-ray powder diffraction up to high pressures of 26.2 and 23.4 GPa, respectively. The study demonstrates a pressure-induced structural phase transition starting at 10 GPa, with the coexistence of phases in the range of 10-20 GPa. The sluggish first-order phase transition is complete by 20 GPa. Importantly, the new phase could be recovered at ambient conditions. Raman spectra of the recovered new phase indicate increased distortion and as a consequence the lowering of the local symmetry of the VO4 tetrahedra. This behavior is different from that reported for isostructural compounds Zn3(VO4)2 and Ni3(VO4)2 where both show stable structures, although almost similar anisotropic compression of the unit cell is observed. The transition observed in orthorhombic Mn3(VO4)2 could be due to the internal charge transfer between the cations, which favors the structural transition at lower pressures and the eventual recovery of the new phase even upon pressure release in comparison to other isostructural compounds. The experimental equation of state parameters obtained for orthorhombic Mn3(VO4)2 match excellently with empirically calculated values reported earlier.

3.
Inorg Chem ; 55(22): 11791-11800, 2016 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-27934308

RESUMEN

Herein we report results of pressure- and temperature-dependent Raman scattering studies on Pr2Ti2O7. Pressure-dependent studies performed up to 23 GPa suggest a reversible phase transition above 15 GPa with subtle changes. Temperature-dependent investigations performed in the range of 77-1073 K showed anomalous temperature dependence of some of the Raman modes. Temperature-dependent X-ray diffraction data indicated no structural transition but nonlinear expansion of unit-cell parameters with increasing temperature. With increasing temperature, the structure dilates anisotropically, and volume of coordination polyhedra around all the atoms expands. Also with increasing temperature the distortions in coordination polyhedra around all the atoms decrease, and appreciable decrease is observed in Pr(1)O10 and Pr(3)O9 units. The pressure evolution of Raman-mode frequencies was analyzed for both ambient as well as high-pressure phases, and mode Grüneisen parameters for ambient pressure phase were obtained. The temperature evolution of Raman-mode frequencies was analyzed to obtain the explicit and implicit anharmonic components, and it was found that some of the modes attributable to TiO6 octahedra and PrOn polyhedra have dominating explicit anharmonic component. Comparison of the structural data with the temperature dependence of Raman modes suggests that the anomalous behavior in Raman modes is due to phonon-phonon interaction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...