Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Curr Biol ; 11(24): R1041-53, 2001 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-11747845

RESUMEN

Understanding how the diverse cells of the nervous system generate sensations, memories and behaviors is a profound challenge. This is because the activity of most neurons cannot easily be monitored or individually manipulated in vivo. As a result, it has been difficult to determine how different neurons contribute to nervous system function, even in simple organisms like Drosophila. Recent advances promise to change this situation by supplying molecular genetic tools for modulating neuronal activity that can be deployed in a spatially and temporally restricted fashion. In some cases, targeted groups of neurons can be 'switched off' and back 'on' at will in living, behaving animals.


Asunto(s)
Drosophila melanogaster/fisiología , Neuronas/fisiología , Animales , Drosophila melanogaster/genética , Canales de Potasio/fisiología , Sinapsis/fisiología
2.
Proc Natl Acad Sci U S A ; 98(22): 12596-601, 2001 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-11675495

RESUMEN

In Drosophila, the most widely used system for generating spatially restricted transgene expression is based on the yeast GAL4 protein and its target upstream activating sequence (UAS). To permit temporal as well as spatial control over UAS-transgene expression, we have explored the use of a conditional RU486-dependent GAL4 protein (GeneSwitch) in Drosophila. By using cloned promoter fragments of the embryonic lethal abnormal vision gene or the myosin heavy chain gene, we have expressed GeneSwitch specifically in neurons or muscles and show that its transcriptional activity within the target tissues depends on the presence of the activator RU486 (mifepristone). We used available UAS-reporter lines to demonstrate RU486-dependent tissue-specific transgene expression in larvae. Reporter protein expression could be detected 5 h after systemic application of RU486 by either feeding or "larval bathing." Transgene expression levels were dose-dependent on RU486 concentration in larval food, with low background expression in the absence of RU486. By using genetically altered ion channels as reporters, we were able to change the physiological properties of larval bodywall muscles in an RU486-dependent fashion. We demonstrate here the applicability of GeneSwitch for conditional tissue-specific expression in Drosophila, and we provide tools to control pre- and postsynaptic expression of transgenes at the larval neuromuscular junction during postembryonic life.


Asunto(s)
Drosophila/genética , Proteínas Fúngicas/genética , Proteínas de Saccharomyces cerevisiae , Factores de Transcripción/genética , Transgenes , Animales , Proteínas de Unión al ADN , Relación Dosis-Respuesta a Droga , Mifepristona/farmacología , Unión Neuromuscular/fisiología , Especificidad de Órganos , Transcripción Genética
3.
Neuron ; 31(5): 699-711, 2001 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-11567611

RESUMEN

We describe here a general technique for the graded inhibition of cellular excitability in vivo. Inhibition is accomplished by expressing a genetically modified Shaker K(+) channel (termed the EKO channel) in targeted cells. Unlike native K(+) channels, the EKO channel strongly shunts depolarizing current: activating at potentials near E(K) and not inactivating. Selective targeting of the channel to neurons, muscles, and photoreceptors in Drosophila using the Gal4-UAS system results in physiological and behavioral effects consistent with attenuated excitability in the targeted cells, often with loss of neuronal function at higher transgene dosages. By permitting the incremental reduction of electrical activity, the EKO technique can be used to address a wide range of questions regarding neuronal function.


Asunto(s)
Drosophila melanogaster/genética , Marcación de Gen , Potenciales de la Membrana/genética , Sistema Nervioso/metabolismo , Neuronas/metabolismo , Canales de Potasio/genética , Adaptación Fisiológica/genética , Animales , Conducta Animal/fisiología , Células Cultivadas , Proteínas de Drosophila , Drosophila melanogaster/citología , Drosophila melanogaster/metabolismo , Femenino , Dosificación de Gen , Regulación del Desarrollo de la Expresión Génica/genética , Genes Letales/fisiología , Larva/genética , Larva/crecimiento & desarrollo , Larva/metabolismo , Músculos/embriología , Músculos/metabolismo , Músculos/fisiopatología , Mutación/fisiología , Sistema Nervioso/citología , Sistema Nervioso/embriología , Inhibición Neural/genética , Neuronas/citología , Neuronas Aferentes/citología , Neuronas Aferentes/metabolismo , Fenotipo , Células Fotorreceptoras de Invertebrados/citología , Células Fotorreceptoras de Invertebrados/metabolismo , Canales de Potasio/metabolismo , Canales de Potasio de la Superfamilia Shaker , Transmisión Sináptica/genética , Transgenes/fisiología
4.
J Neurobiol ; 43(2): 186-97, 2000 May.
Artículo en Inglés | MEDLINE | ID: mdl-10770847

RESUMEN

In Drosophila, the type I motor terminals innervating the larval ventral longitudinal muscle fibers 6 and 7 have been the most popular preparation for combining synaptic studies with genetics. We have further characterized the normal morphological and physiological properties of these motor terminals and the influence of muscle size on terminal morphology. Using dye-injection and physiological techniques, we show that the two axons supplying these terminals have different innervation patterns: axon 1 innervates only muscle fibers 6 and 7, whereas axon 2 innervates all of the ventral longitudinal muscle fibers. This difference in innervation pattern allows the two axons to be reliably identified. The terminals formed by axons 1 and 2 on muscle fibers 6 and 7 have the same number of branches; however, axon 2 terminals are approximately 30% longer than axon 1 terminals, resulting in a corresponding greater number of boutons for axon 2. The axon 1 boutons are approximately 30% wider than the axon 2 boutons. The excitatory postsynaptic potential (EPSP) produced by axon 1 is generally smaller than that produced by axon 2, although the size distributions show considerable overlap. Consistent with vertebrate studies, there is a correlation between muscle fiber size and terminal size. For a single axon, terminal area and length, the number of terminal branches, and the number of boutons are all correlated with muscle fiber size, but bouton size is not. During prolonged repetitive stimulation, axon 2 motor terminals show synaptic depression, whereas axon 1 EPSPs facilitate. The response to repetitive stimulation appears to be similar at all motor terminals of an axon.


Asunto(s)
Drosophila/citología , Drosophila/fisiología , Unión Neuromuscular/citología , Unión Neuromuscular/fisiología , Animales , Axones/fisiología , Tamaño de la Célula/fisiología , Estimulación Eléctrica , Potenciales Postsinápticos Excitadores , Técnicas In Vitro , Larva/citología , Larva/fisiología , Neuronas Motoras/citología , Neuronas Motoras/fisiología , Fibras Musculares Esqueléticas/citología , Plasticidad Neuronal/fisiología
5.
Neuron ; 28(3): 793-806, 2000 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-11163267

RESUMEN

Fray is a serine/threonine kinase expressed by the peripheral glia of Drosophila, whose function is required for normal axonal ensheathment. Null fray mutants die early in larval development and have nerves with severe swelling and axonal defasciculation. The phenotype is associated with a failure of the ensheathing glia to correctly wrap peripheral axons. When the fray cDNA is expressed in the ensheathing glia of fray mutants, normal nerve morphology is restored. Fray belongs to a novel family of Ser/Thr kinases, the PF kinases, whose closest relatives are the PAK kinases. Rescue of the Drosophila mutant phenotype with PASK, the rat homolog of Fray, demonstrates a functional homology among these proteins and suggests that the Fray signaling pathway is widely conserved.


Asunto(s)
Axones/metabolismo , Vaina de Mielina/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Secuencia Conservada , Drosophila , Proteínas de Insectos/metabolismo , Larva/genética , Larva/crecimiento & desarrollo , Larva/metabolismo , Datos de Secuencia Molecular , Mutación , Neuroglía/metabolismo , Neuroglía/patología , Sistema Nervioso Periférico/crecimiento & desarrollo , Sistema Nervioso Periférico/metabolismo , Sistema Nervioso Periférico/patología , Fenotipo , Proteínas Serina-Treonina Quinasas/biosíntesis , Homología de Secuencia de Aminoácido , Transducción de Señal/genética , Transfección
7.
Development ; 126(7): 1527-35, 1999 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-10068645

RESUMEN

The Dock SH2-SH3 domain adapter protein, a homolog of the mammalian Nck oncoprotein, is required for axon guidance and target recognition by photoreceptor axons in Drosophila larvae. Here we show that Dock is widely expressed in neurons and at muscle attachment sites in the embryo, and that this expression pattern has both maternal and zygotic components. In motoneurons, Dock is concentrated in growth cones. Loss of zygotic dock function causes a selective delay in synapse formation by the RP3 motoneuron at the cleft between muscles 7 and 6. These muscles often completely lack innervation in late stage 16 dock mutant embryos. RP3 does form a synapse later in development, however, because muscles 7 and 6 are normally innervated in third-instar mutant larvae. The absence of zygotically expressed Dock also results in subtle defects in a longitudinal axon pathway in the embryonic central nervous system. Concomitant loss of both maternally and zygotically derived Dock dramatically enhances these central nervous system defects, but does not increase the delay in RP3 synaptogenesis. These results indicate that Dock facilitates synapse formation by the RP3 motoneuron and is also required for guidance of some interneuronal axons The involvement of Dock in the conversion of the RP3 growth cone into a presynaptic terminal may reflect a role for Dock-mediated signaling in remodeling of the growth cone's cytoskeleton.


Asunto(s)
Proteínas de Unión al Calcio , Drosophila/embriología , Proteínas del Tejido Nervioso/genética , Dominios Homologos src/genética , Proteínas Adaptadoras Transductoras de Señales , Animales , Axones/metabolismo , Sistema Nervioso Central/embriología , Proteínas de Drosophila , Embrión no Mamífero , Regulación del Desarrollo de la Expresión Génica/genética , Conos de Crecimiento/metabolismo , Inmunohistoquímica , Glicoproteínas de Membrana/genética , Mutación , Células Fotorreceptoras de Invertebrados/metabolismo , Transducción de Señal/genética , Sinapsis/metabolismo , Sinaptotagminas
8.
Development ; 126(2): 273-80, 1999 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-9847241

RESUMEN

In Drosophila the precursors of the adult musculature arise during embryogenesis. These precursor cells have been termed Persistent Twist Cells (PTCs), as they continue to express the transcription factor Twist after that gene ceases expression elsewhere in the mesoderm. In the larval abdomen, the PTCs are associated with peripheral nerves in stereotypic ventral, dorsal, and lateral clusters, which give rise, respectively, to the ventral, dorsal, and lateral muscle fiber groups of the adult. We tested the developmental potential of the PTCs by using a microbeam laser to ablate specific clusters in larvae. We found that the ablation of a single segmental PTC cluster does not usually result in the deletion of the corresponding adult fibers of that segment. Instead, normal or near normal numbers of adult fibers can form after the ablation. Examination of pupae following ablation showed that migrating PTCs from adjacent segments are able to invade the affected segment, replenishing the ablated cells. However, the ablation of homologous PTCs in multiple segments does result in the deletion of the corresponding adult muscle fibers. These data indicate that the PTCs in an abdominal segment can contribute to the formation of muscle fibers in adjacent abdominal segments, and thus are not inherently restricted to the formation of muscle fibers within their segment of origin.


Asunto(s)
Drosophila/embriología , Larva/efectos de la radiación , Terapia por Láser , Desarrollo de Músculos , Abdomen/efectos de la radiación , Animales , Recuento de Células , Movimiento Celular , Histocitoquímica , Larva/citología , Fibras Musculares Esqueléticas/metabolismo , Pupa/citología
9.
Dev Biol ; 199(1): 164-74, 1998 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-9676200

RESUMEN

The Toll signaling pathway functions in several Drosophila processes, including dorsal-ventral pattern formation and the immune response. Here, we demonstrate that this pathway is required in the epidermis for proper muscle development. Previously, we showed that the zygotic Toll protein is necessary for normal muscle development; in the absence of zygotic Toll, close to 50% of hemisegments have muscle patterning defects consisting of missing, duplicated and misinserted muscle fibers (Halfon, M.S., Hashimoto, C., and Keshishian, H., Dev. Biol. 169, 151-167, 1995). We have now also analyzed the requirements for easter, spätzle, tube, and pelle, all of which function in the Toll-mediated dorsal-ventral patterning pathway. We find that spätzle, tube, and pelle, but not easter, are necessary for muscle development. Mutations in these genes give a phenotype identical to that seen in Toll mutants, suggesting that elements of the same pathway used for Toll signaling in dorsal-ventral development are used during muscle development. By expressing the Toll cDNA under the control of distinct Toll enhancer elements in Toll mutant flies, we have examined the spatial requirements for Toll expression during muscle development. Expression of Toll in a subset of epidermal cells that includes the epidermal muscle attachment cells, but not Toll expression in the musculature, is necessary for proper muscle development. Our results suggest that signals received by the epidermis early during muscle development are an important part of the muscle patterning process.


Asunto(s)
Proteínas de Drosophila , Drosophila/embriología , Inducción Embrionaria , Epidermis/metabolismo , Proteínas de Insectos/metabolismo , Glicoproteínas de Membrana/metabolismo , Músculos/embriología , Receptores de Superficie Celular , Animales , Tipificación del Cuerpo , Inducción Embrionaria/genética , Elementos de Facilitación Genéticos , Regulación del Desarrollo de la Expresión Génica , Proteínas de Insectos/genética , Glicoproteínas de Membrana/genética , Mutación , Proteínas Serina-Treonina Quinasas/genética , Serina Endopeptidasas/genética , Receptores Toll-Like
10.
Development ; 125(9): 1769-79, 1998 May.
Artículo en Inglés | MEDLINE | ID: mdl-9521914

RESUMEN

During Drosophila pupal metamorphosis, the motoneurons and muscles differentiate synchronously, providing an opportunity for extensive intercellular regulation during synapse formation. We examined the existence of such interactions by developmentally delaying or permanently eliminating synaptic partners during the formation of indirect flight muscles. When we experimentally delayed muscle development, we found that although adult-specific primary motoneuron branching still occurred, the higher order (synaptic) branching was suspended until the delayed muscle fibers reached a favourable developmental state. In reciprocal experiments we found that denervation caused a decrease in the myoblast pool. Furthermore, the formation of certain muscle fibers (dorsoventral muscles) was specifically blocked. Exceptions were the adult muscles that use larval muscle fibers as myoblast fusion targets (dorsal longitudinal muscles). However, when these muscles were experimentally compelled to develop without their larval precursors, they showed an absolute dependence on the motoneurons for their formation. These data show that the size of the myoblast pool and early events in fiber formation depend on the presence of the nerve, and that, conversely, peripheral arbor development and synaptogenesis is closely synchronized with the developmental state of the muscle.


Asunto(s)
Drosophila/crecimiento & desarrollo , Vuelo Animal/fisiología , Neuronas Motoras/fisiología , Músculo Esquelético/inervación , Unión Neuromuscular/crecimiento & desarrollo , Animales , Larva/crecimiento & desarrollo , Metamorfosis Biológica/fisiología , Modelos Neurológicos , Desnervación Muscular , Desarrollo de Músculos , Fibras Musculares Esqueléticas , Músculo Esquelético/crecimiento & desarrollo , Pupa/crecimiento & desarrollo
11.
Proc Natl Acad Sci U S A ; 94(12): 6255-60, 1997 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-9177204

RESUMEN

We have developed a method to target gene expression in the Drosophila embryo to a specific cell without having a promoter that directs expression in that particular cell. Using a digitally enhanced imaging system to identify single cells within the living embryo, we apply a heat shock to each cell individually by using a laser microbeam. A 1- to 2-min laser treatment is sufficient to induce a heat-shock response but is not lethal to the heat-shocked cells. Induction of heat shock was measured in a variety of cell types, including neurons and somatic muscles, by the expression of beta-galactosidase from an hsp26-lacZ reporter construct or by expression of a UAS target gene after induction of hsGAL4. We discuss the applicability of this technique to ectopic gene expression studies, lineage tracing, gene inactivation studies, and studies of cells in vitro. Laser heat shock is a versatile technique that can be adapted for use in a variety of research organisms and is useful for any studies in which it is desirable to express a given gene in only a distinct cell or clone of cells, either transiently or constitutively, at a time point of choice.


Asunto(s)
Drosophila/embriología , Regulación del Desarrollo de la Expresión Génica , Mosaicismo , Proteínas de Saccharomyces cerevisiae , Factores de Transcripción , Animales , Animales Modificados Genéticamente , Proteínas de Unión al ADN , Drosophila/genética , Proteínas de Drosophila , Embrión no Mamífero/fisiología , Proteínas Fúngicas/biosíntesis , Regulación del Desarrollo de la Expresión Génica/efectos de la radiación , Proteínas de Choque Térmico/biosíntesis , Calor , Rayos Láser , Regiones Promotoras Genéticas , Proteínas Recombinantes de Fusión/biosíntesis , beta-Galactosidasa/biosíntesis
12.
Development ; 122(12): 3755-63, 1996 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-9012497

RESUMEN

The six Dorsal Longitudinal flight Muscles (DLMs) of Drosophila develop from three larval muscles that persist into metamorphosis and serve as scaffolds for the formation of the adult fibers. We have examined the effect of muscle scaffold ablation on the development of DLMs during metamorphosis. Using markers that are specific to muscle and myoblasts we show that in response to the ablation, myoblasts which would normally fuse with the larval muscle, fuse with each other instead, to generate the adult fibers in the appropriate regions of the thorax. The development of these de novo DLMs is delayed and is reflected in the delayed expression of erect wing, a transcription factor thought to control differentiation events associated with myoblast fusion. The newly arising muscles express the appropriate adult-specific Actin isoform (88F), indicating that they have the correct muscle identity. However, there are frequent errors in the number of muscle fibers generated. Ablation of the larval scaffolds for the DLMs has revealed an underlying potential of the DLM myoblasts to initiate de novo myogenesis in a manner that resembles the mode of formation of the Dorso-Ventral Muscles, DVMs, which are the other group of indirect flight muscles. Therefore, it appears that the use of larval scaffolds is a superimposition on a commonly used mechanism of myogenesis in Drosophila. Our results show that the role of the persistent larval muscles in muscle patterning involves the partitioning of DLM myoblasts, and in doing so, they regulate formation of the correct number of DLM fibers.


Asunto(s)
Tipificación del Cuerpo , Proteínas de Drosophila , Músculos/embriología , Factores de Transcripción , Animales , Drosophila/embriología , Larva , Terapia por Láser , Metamorfosis Biológica , Modelos Biológicos , Músculos/citología , Neuropéptidos , Proteínas Nucleares , Células Madre , Proteína 1 Relacionada con Twist
13.
Dev Biol ; 180(2): 424-32, 1996 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-8954715

RESUMEN

Neurons contact their neighbors through a diverse array of cell adhesion and other surface molecules. These molecules can exhibit highly regulated patterns of expression, underscoring their multiple roles in establishing specific interactions between neurons and their environment. Recent studies are beginning to ask how these membrane-bound neural recognition molecules interact with each other and intracellular signaling pathways within an individual neuronal growth cone, and direct the formation of neural connections during development.


Asunto(s)
Moléculas de Adhesión Celular/fisiología , Modelos Neurológicos , Neuronas/fisiología , Animales , Axones/fisiología , Adhesión Celular , Moléculas de Adhesión Celular/biosíntesis , Comunicación Celular , Membrana Celular/fisiología , Regulación del Desarrollo de la Expresión Génica , Neuronas/citología , Transducción de Señal
14.
J Mol Recognit ; 9(5-6): 426-32, 1996.
Artículo en Inglés | MEDLINE | ID: mdl-9174920

RESUMEN

The tetrapeptide GPRP was previously shown to be an effective affinity ligand for fibrinogen when immobilized to Fractogel (Kuyas et al., 1990). The authors synthesized the GPRP peptide directly onto an aminefunctionalized POROS chromatographic resin to demonstrate the effectiveness of this approach for generating perfusive affinity media. Fibrinogen from plasma bound to an NH2-GPRP-POROS column under 50 mM phosphate buffer, 0.15 M NaCl, pH 7 at 15 ml/min flow rate. The bound fibrinogen showed weak clotting activity when eluted with 20 mM acetate buffer, pH 4. The peptide column did not bind denatured fibrinogen. The dynamic binding capacity of the column by frontal analysis was 10.2 mg/ml column volume. The total analysis time was under 5 min. Similarly, the CAQCHTVEK peptide of cytochrome c with heme group covalently attached to the SH groups of the two cysteines is known to bind to albumins (Adams et al., 1989). A simplified peptide analogue, GAQGHTVEK, was synthesized directlyon POROS resin. Under 20 mM MES, pH 6, albumin from human serum bound specifically to this peptide column and eluted with a salt gradient at 0.2 M NaCl, 20 mM MES (2-[N-Morpholino]ethane sulfonic acid), pH 6. The dynamic binding capacity of human serum albumin by frontal analysis was 19 mg/ml column volume. Thus, this column can purify albumin from human serum under non-denaturing conditions.


Asunto(s)
Cromatografía de Afinidad/métodos , Péptidos/química , Proteínas/aislamiento & purificación , Fibrinógeno/aislamiento & purificación , Humanos , Péptidos/síntesis química , Resinas de Plantas , Albúmina Sérica/aislamiento & purificación
15.
J Neurosci ; 16(18): 5715-26, 1996 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-8795627

RESUMEN

We have tested the effects of neuromuscular denervation in Drosophila by laser-ablating the RP motoneurons in intact embryos before synaptogenesis. We examined the consequences of this ablation on local synaptic connectivity in both 1st and 3rd instar larvae. We find that the partial or complete loss of native innervation correlates with the appearance of alternate inputs from neighboring motor endings and axons. These collateral inputs are found at ectopic sites on the denervated target muscle fibers. The foreign motor endings are electrophysiologically functional and are observed on the denervated muscle fibers by the 1st instar larval stage. Our data are consistent with the existence of a local signal from the target environment, which is regulated by innervation and influences synaptic connectivity. Our results show that, despite the stereotypy of Drosophila neuromuscular connections, denervation can induce local changes in connectivity in wild-type Drosophila, suggesting that mechanisms of synaptic plasticity may also be involved in normal Drosophila neuromuscular development.


Asunto(s)
Desnervación , Drosophila melanogaster/crecimiento & desarrollo , Rayos Láser , Neuronas Motoras/efectos de la radiación , Fibras Musculares Esqueléticas/efectos de la radiación , Regeneración Nerviosa , Animales , Desnervación/métodos , Larva , Terminaciones Nerviosas/fisiología , Vías Nerviosas/anatomía & histología , Vías Nerviosas/fisiología , Sinapsis/fisiología , Sinapsis/ultraestructura , Terminología como Asunto
16.
Dev Biol ; 176(2): 220-9, 1996 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-8660863

RESUMEN

In many organisms muscle formation depends on specialized cells that prefigure the pattern of the musculature and serve as templates for myoblast organization and fusion. These include muscle pioneers in insects and muscle organizing cells in leech. In Drosophila, muscle founder cells have been proposed to play a similar role in organizing larval muscle development during embryogenesis. During metamorphosis in Drosophila, following histolysis of most of the larval musculature, there is a second round of myogenesis that gives rise to the adult muscles. It is not known whether muscle founder cells organize the development of these muscles. However, in the thorax specific larval muscle fibers do not histolyze at the onset of metamorphosis, but instead serve as templates for the formation of a subset of adult muscles, the dorsal longitudinal flight muscles (DLMs). Because these persistent larval muscle fibers appear to be functioning in many respects like muscle founder cells, we investigated whether they were necessary for DLM development by using a microbeam laser to ablate them singly and in combination. We found that, in the absence of the larval muscle fibers, DLMs nonetheless develop. Our results show that the persistent larval muscle fibers are not required to initiate myoblast fusion, to determine DLM identity, to locate the DLMs in the thorax, or to specify the total DLM fiber volume. However, they are required to regulate the number of DLM fibers generated. Thus, while the persistent larval muscle fibers are not obligatory for DLM fiber formation and differentiation, they are necessary to ensure the development of the correct number of fibers.


Asunto(s)
Drosophila/crecimiento & desarrollo , Desarrollo de Músculos , Actinas/genética , Animales , Drosophila/metabolismo , Vuelo Animal , Galactósidos/metabolismo , Histocitoquímica , Indoles/metabolismo , Operón Lac , Larva/crecimiento & desarrollo , Rayos Láser , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/efectos de la radiación , Fibras Musculares Esqueléticas/ultraestructura , Músculos/metabolismo , Músculos/efectos de la radiación , Cadenas Pesadas de Miosina/genética , beta-Galactosidasa/genética , beta-Galactosidasa/metabolismo
17.
Annu Rev Neurosci ; 19: 545-75, 1996.
Artículo en Inglés | MEDLINE | ID: mdl-8833454

RESUMEN

The Drosophila neuromuscular junction has attracted widespread attention as an excellent model system for studying the cellular and molecular mechanisms of synaptic development and neurotransmission. In Drosophila the advantages of invertebrate small systems, where individual cells can be examined with single-cell resolution, are combined with the powerful techniques of patch-clamp analysis and molecular genetics. In this review we examine myogenesis and motoneuron development, the problems of axon outgrowth and target selection, the differentiation of the synapse, and the mechanisms of both synaptic function and plasticity in this model genetic system.


Asunto(s)
Modelos Neurológicos , Neuronas Motoras/fisiología , Unión Neuromuscular/fisiología , Sinapsis/fisiología , Animales , Axones/fisiología , Comunicación Celular , Diferenciación Celular , Drosophila/genética , Drosophila/fisiología , Drosophila melanogaster , Neuronas Motoras/citología , Músculos/citología , Músculos/inervación , Mutagénesis , Fenómenos Fisiológicos del Sistema Nervioso , Plasticidad Neuronal
18.
J Neurosci ; 15(12): 8177-90, 1995 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-8613752

RESUMEN

This article reveals a novel aspect in the regulation of synaptic connectivity in Drosophila. Reducing neural activity genetically or pharmacologically disrupts the normally precise embryonic and larval neuromuscular connections. In third instar larvae with mutations that affect sodium channel function or expression such as no action potential, temperature-induced paralysis E, or seizure1, foreign neuromuscular synapses, arising from inappropriate nerve sources, are observed on muscle fibers throughout the abdominal body wall. Their frequencies increase as neural activity is further reduced in double mutant combinations. These foreign connections are first observed during late embryogenesis as filopodial-like contacts, but critical period analysis suggests that neural activity must be reduced during both late embryogenesis and the first larval instar to promote the differentiation of these embryonic contacts into foreign motor synapses. In addition, the loss of electrical activity in the motoneuron, as opposed to the loss of postsynaptic potentials in the muscle fibers, appears to be responsible for these changes in connectivity. Our experiments suggest that neural activity may function during development by preventing inappropriate connections and thereby maintaining the precise connectivity achieved during nerve outgrowth and target selection.


Asunto(s)
Drosophila/fisiología , Fenómenos Fisiológicos del Sistema Nervioso , Sistema Nervioso , Sinapsis/fisiología , Animales , Drosophila/genética , Drosophila/crecimiento & desarrollo , Larva , Mutación , Sistema Nervioso/embriología , Sistema Nervioso/crecimiento & desarrollo , Unión Neuromuscular , Canales de Sodio/metabolismo
19.
Dev Biol ; 169(1): 151-67, 1995 May.
Artículo en Inglés | MEDLINE | ID: mdl-7750635

RESUMEN

Toll is a maternally required Drosophila gene that encodes a transmembrane protein with an important function in embryonic dorsal-ventral patterning. The Toll protein is widely expressed zygotically, but its roles in late embryo-genesis have not been described in detail. We have examined the expression of Toll protein in the late embryonic central nervous system and somatic musculature. Toll is expressed in a dynamic pattern in teh musculature, initially in several muscle fibers in each hemisegment, with a later narrowing of expression to a single muscle fiber pair. Zygotic Toll mutants were used to investigate the development consequences of loss of Toll expression. We found that loss of one or both copies of the Toll gene leads to widespread defects in motoneuron number and muscle patterning. Loss of motoneurons prevents certain muscle fibers from receiving their wild-type innervation. Denervation in the mutants results in collateral sprouting from nearby nerve branches and leads to the appearance of ectopically placed motor endings. The limited expressivity observed suggests that Toll is only one of several genes required for proper motoneuron and muscle specification.


Asunto(s)
Proteínas de Drosophila , Drosophila/embriología , Hormonas de Insectos/biosíntesis , Glicoproteínas de Membrana/biosíntesis , Músculos/embriología , Sistema Nervioso/embriología , Receptores de Superficie Celular , Cigoto/fisiología , Animales , Drosophila/anatomía & histología , Drosophila/genética , Genes de Insecto , Hormonas de Insectos/genética , Larva , Glicoproteínas de Membrana/genética , Modelos Biológicos , Neuronas Motoras/fisiología , Fibras Musculares Esqueléticas/patología , Músculos/anatomía & histología , Músculos/inervación , Mutación , Sistema Nervioso/anatomía & histología , Unión Neuromuscular/embriología , Receptores Toll-Like
20.
Nature ; 374(6518): 166-8, 1995 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-7877688

RESUMEN

Fasciclin III, a cell adhesion molecule of the immunoglobulin superfamily, is expressed by motor neuron RP3 and its synaptic targets (muscle cells 6 and 7) during embryonic neuromuscular development of Drosophila. We report here that RP3 often incorrectly innervates neighbouring non-target muscle cells when these cells misexpress fasciclin III, but still innervates normal targets in the fasciclin III null mutant. Fasciclin III manipulations do not influence target selections by other motor neurons, including fasciclin III-expressing RP1. We propose that fasciclin III acts as a synaptic target recognition molecule for motor neuron RP3, and also that its absence can be compensated for by other molecule(s).


Asunto(s)
Moléculas de Adhesión Celular Neuronal/metabolismo , Sinapsis/metabolismo , Animales , Axones/metabolismo , Moléculas de Adhesión Celular Neuronal/genética , Proteínas de Drosophila , Drosophila melanogaster , Larva , Neuronas Motoras/metabolismo , Músculos/embriología , Músculos/inervación , Mutación , Sistema Nervioso/embriología , Sistema Nervioso/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA