Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Future Sci OA ; 10(1): 2387961, 2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-39248050

RESUMEN

Macrophages are integral part of the body's defense against pathogens and serve as vital regulators of inflammation. Adaptor molecules, featuring diverse domains, intricately orchestrate the recruitment and transmission of inflammatory responses through signaling cascades. Key domains involved in macrophage polarization include Toll-like receptors (TLRs), Src Homology2 (SH2) and other small domains, alongside receptor tyrosine kinases, crucial for pathway activation. This review aims to elucidate the enigmatic role of macrophage adaptor molecules in modulating macrophage activation, emphasizing their diverse roles and potential therapeutic and investigative avenues for further exploration.


In our manuscript, we explore the vital role of adaptor proteins regarding ways, our immune cells, specifically macrophages, detect and respond to threats. These proteins act as crucial messengers, helping macrophages recognize harmful invaders and initiate the body's defense mechanisms. Understanding this process not only sheds light on how our immune system works but also holds promise for developing new therapies to combat infections and inflammatory diseases. Our findings offer insight into the intricate world of immune response, potentially paving the way for improved treatments for a range of health conditions.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38549520

RESUMEN

Overproduction of reactive nitrogen and oxygen species (RNS and ROS) has been linked to the pathogenesis of diabetes, hypertension, hyperlipidemia, stroke, angina, and other cardiovascular diseases. These species are produced in part by the mitochondrial respiratory chain, NADPH oxidase, and xanthine oxidase. RNS and ROS both contribute to oxidative stress, which is necessary for the development of cardiovascular disorders. In addition to ROS species like hydroxyl ion, hydrogen peroxide, and superoxide anion, RNS species like nitric oxide, peroxynitrous acid, peroxynitrite, and nitrogen dioxide radicals have also been linked to a number of cardiovascular conditions. They promote endothelial dysfunction, vascular inflammation, lipid peroxidation, and oxidative damage, all of which contribute to the development of cardiovascular pathologies. It's crucial to understand the mechanisms that result in the production of RNS and ROS in order to identify potential therapeutic targets. Redox biomarkers serve as indicators of oxidative stress, making them crucial tools for diagnosing and predicting cardiovascular states. The advancements in proteomics, metabolomics, genomics, and transcriptomics have made the identification and detection of these small molecules possible. The following redox biomarkers are notable examples: 3-nitrotyrosine, 4-hydroxy-2-nonenal, 8- iso-prostaglandin F2, 8-hydroxy-2-deoxyguanosine, malondialdehyde, Diacron reactive oxygen metabolites, total thiol, and specific microRNAs (e.g. miRNA199, miRNA21, miRNA1254, miRNA1306-5p, miRNA26b-5p, and miRNA660-5p) are examples. Although redox biomarkers have great potential, their clinical applicability faces challenges. Redox biomarkers frequently have a short half-life and exist in small quantities in the blood, making them challenging to identify and measure. The interpretation of biomarker data may also be influenced by confounding factors and the complex interplay of various oxidative stress pathways. Therefore, in-depth validation studies and the development of sensitive and precise detection methods are needed to address these problems. In the search for redox biomarkers, cutting-edge techniques like mass spectrometry, immunoassays, and molecular diagnostics are applied. New platforms and technologies have made it possible to accurately detect and monitor redox biomarkers, which facilitates their use in clinical settings. Our expanding knowledge of RNS and ROS involvement in cardiovascular disorders has made it possible to develop redox biomarkers as diagnostic and prognostic tools. Overcoming the challenges associated with their utility and utilizing advanced detection techniques, which will improve their clinical applicability, will ultimately benefit the management and treatment of cardiovascular conditions.

3.
Front Immunol ; 15: 1355012, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38482001

RESUMEN

Macrophages play a central role in initiating, maintaining, and terminating inflammation. For that, macrophages respond to various external stimuli in changing environments through signaling pathways that are tightly regulated and interconnected. This process involves, among others, autoregulatory loops that activate and deactivate macrophages through various cytokines, stimulants, and other chemical mediators. Adaptor proteins play an indispensable role in facilitating various inflammatory signals. These proteins are dynamic and flexible modulators of immune cell signaling and act as molecular bridges between cell surface receptors and intracellular effector molecules. They are involved in regulating physiological inflammation and also contribute significantly to the development of chronic inflammatory processes. This is at least partly due to their involvement in the activation and deactivation of macrophages, leading to changes in the macrophages' activation/phenotype. This review provides a comprehensive overview of the 20 adaptor molecules and proteins that act as negative regulators of inflammation in macrophages and effectively suppress inflammatory signaling pathways. We emphasize the functional role of adaptors in signal transduction in macrophages and their influence on the phenotypic transition of macrophages from pro-inflammatory M1-like states to anti-inflammatory M2-like phenotypes. This endeavor mainly aims at highlighting and orchestrating the intricate dynamics of adaptor molecules by elucidating the associated key roles along with respective domains and opening avenues for therapeutic and investigative purposes in clinical practice.


Asunto(s)
Citocinas , Macrófagos , Humanos , Citocinas/metabolismo , Transducción de Señal , Inflamación , Proteínas Adaptadoras Transductoras de Señales/metabolismo
5.
Int Immunopharmacol ; 119: 110176, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37104916

RESUMEN

Adaptor proteins represent key signalling molecules involved in regulating immune responses. The host's innate immune system recognizes pathogens via various surface and intracellular receptors. Adaptor molecules are centrally involved in different receptor-mediated signalling pathways, acting as bridges between the receptors and other molecules. The presence of adaptors in major signalling pathways involved in the pathogenesis of various chronic inflammatory diseases has drawn attention toward the role of these proteins in such diseases. In this review, we summarize the importance and roles of different adaptor molecules in macrophage-mediated signalling in various chronic disease states. We highlight the mechanistic roles of adaptors and how they are involved in protein-protein interactions (PPI) via different domains to carry out signalling. Hence, we also provide insights into how targeting these adaptor proteins can be a good therapeutic strategy against various chronic inflammatory diseases.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Transducción de Señal , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Macrófagos
6.
World J Clin Cases ; 11(6): 1275-1286, 2023 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-36926128

RESUMEN

Metabolic associated fatty liver disorder (MAFLD) characterizes the contributing etiologies (i.e., type 2 diabetes mellitus, metabolic syndrome, overweight) of individuals with fatty liver disease that affects 1/3rd of the world population. In 2020, the coronavirus disease 2019 (COVID-19) crisis was unprecedented, and people with different comorbidities became more susceptible to the infection caused by severe acute respiratory syndrome coronavirus 2. MAFLD patients are frequently obese with added metabolic menace like diabetes, hypertension, and dyslipidemia leading to greater jeopardy of COVID-19. MAFLD patients are 4 to 6-fold more prone towards infections. COVID-19 induces liver injury with elevated levels of aspartate aminotransferase and alanine aminotransferase and insignificantly elevated bilirubin. Hence, MAFLD in COVID-19 patients worsens the condition significantly. The evidence highlighting the interaction between MAFLD and altered liver functioning in COVID-19 suggested that COVID-19 patients with pre-existing MAFLD are at greater risk of morbidity or intensive care unit admission. Direct hepatic injury, enhanced levels of inflammatory cytokines, declined hepatic mitochondrial activity, and compromised immunity are considered as some underlying mechanisms. The main focus of this review is to discuss the implications of metabolic dysfunction associated with fatty liver disease in COVID-19 patients. The review systematically analyzes the effect of striking two worldwide pandemics (MAFLD and COVID-19) together in the present era.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA