Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 262(Pt 2): 129986, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38360231

RESUMEN

Until now, many efficient catalysts have been reported that are used for the reduction of nitroarenes. However, a catalyst reusability is a challenge that is often faced in practical environment. In this report, we designed a hydrogel composite (CMC-LDH), which act as support and making it possible to address this challenge. In this research work, zinc/aluminum based layered double hydroxides (Zn/Al LDH) have been assembled with carboxymethyl cellulose (CMC) to prepare CMC/LDH hydrogel beads. The CMC/LDH hydrogel beads were prepared by the ionotropic gelation method. For CMC/LDH/Au preparation, the already prepared CMC/LDH beads were kept in gold ion (Au3+) solution, and their subsequent reduction with sodium borohydride (NaBH4). For the characterization of the prepared samples different instrumental techniques, such as Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy, and scanning electron microscopy (SEM) were adopted. For the catalytic evaluation of CMC/LDH/Au, it was utilized as a catalyst in 4-NP and 4-NA reduction reactions. The continuity of the reaction was monitored by a UV-visible spectrophotometer. Rate constant (kapp) of 0.48474 min-1 and 0.7486 min-1 were obtained for 4-NP and 4-NA reduction, respectively. The hydrogel beads were recycled and reused for up to five successive cycles without significantly changing their catalytic efficiency.


Asunto(s)
Carboximetilcelulosa de Sodio , Nanopartículas del Metal , Compuestos de Zinc , Carboximetilcelulosa de Sodio/química , Oro , Nanopartículas del Metal/química , Hidrogeles/química , Zinc , Compuestos Orgánicos , Hidróxidos/química
2.
Int J Biol Macromol ; 206: 917-926, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35304202

RESUMEN

This study reports the synthesis of bacterial cellulose (BC) hydrogel sheets and their utilization as a support for silver­nickel oxide nanocomposites (Ag/NiO). A two-step facile hydrothermal method was employed for the preparation of Ag/NiO, followed by impregnation into BC hydrogel sheets. A 20% Ag/NiO composition was revealed by dry weight analysis. The stability of nanocomposites-Hydrogel was confirmed by Ag+ and Ni2+ ion release study. The catalytic activity of the BC-Ag/NiO was evaluated against chemical reduction of congo red, methyl orange and methylene blue. The reduction reaction followed pseudo first order kinetics and kapp values of 0.1147 min-1, 0.1323 min-1 and 0.12989 min-1 were obtained for CR, MO, and MB dyes, respectively. The BC-Ag/NiO catalyst could be easily recovered and re-used in another reaction without centrifugation. The synthesized nanocomposites hydrogel was also tested for its antibacterial activity against Gram-negative bacteria, Escherichia coli (E.coli) and Gram-positive bacteria, Staphylococcus aureus (S.aureus).


Asunto(s)
Nanopartículas del Metal , Nanocompuestos , Antibacterianos/química , Antibacterianos/farmacología , Bacterias , Celulosa/química , Escherichia coli , Hidrogeles/farmacología , Nanopartículas del Metal/química , Nanocompuestos/química , Plata/química , Plata/farmacología , Staphylococcus aureus
3.
Int J Biol Macromol ; 164: 2922-2930, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-32841669

RESUMEN

In this study, cobalt oxide nanoparticles (Co3O4 NPs) were synthesized by precipitation method from cobalt sulphate solution with basic pH, followed by calcination. The ex-situ synthesized Co3O4 NPs were mixed with hot agar (AG) aqueous solution. The preparation of AG- Co3O4 nanocomposite hydrogel was carried out by self-association method promoted by thermal denaturation. The quenching of hot suspension from 80 °C to room temperature resulted in the formation of AG-Co3O4 nanocomposite hydrogel. The as-synthesized AG-Co3O4 was characterized by FTIR, XRD and SEM techniques. In order to test the catalytic activity, AG-Co3O4 was used as a heterogeneous catalyst for the reduction of methylene blue (MB), congo red (CR) and 4-nitrophenol (4-NP). The excellent performance of the AG-Co3O4 was shown by the reaction rate constant (kapp) values of 0.3623, 0.2114 and 0.2893 for MB, 4-NP and CR, respectively. All these results were obtained with R2 above 94 and utilization of an AG-Co3O4 catalyst. Furthermore, the catalytic reduction was studied with varying dye concentration and catalyst dose. This study showed that AG-Co3O4 catalyst has high potential for remediation of environmental pollutants in wastewaters.


Asunto(s)
Agar/química , Cobalto/farmacología , Contaminantes Ambientales/química , Óxidos/farmacología , Catálisis , Precipitación Química , Cobalto/química , Rojo Congo/química , Hidrogeles , Azul de Metileno/química , Nanocompuestos , Nitrofenoles/química , Óxidos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA