Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Redox Biol ; 67: 102864, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37713777

RESUMEN

Several rare genetic variations of human XDH have been shown to alter xanthine oxidoreductase (XOR) activity leading to impaired purine catabolism. However, XOR is a multi-functional enzyme that depending upon the environmental conditions also expresses oxidase activity leading to both O2·- and H2O2 and nitrite (NO2-) reductase activity leading to nitric oxide (·NO). Since these products express important, and often diametrically opposite, biological activity, consideration of the impact of XOR mutations in the context of each aspect of the biochemical activity of the enzyme is needed to determine the potential full impact of these variants. Herein, we show that known naturally occurring hXDH mutations do not have a uniform impact upon the biochemical activity of the enzyme in terms of uric acid (UA), reactive oxygen species (ROS) and nitric oxide ·NO formation. We show that the His1221Arg mutant, in the presence of xanthine, increases UA, O2·- and NO generation compared to the WT, whilst the Ile703Val increases UA and ·NO formation, but not O2·-. We speculate that this change in the balance of activity of the enzyme is likely to endow those carrying these mutations with a harmful or protective influence over health that may explain the current equipoise underlying the perceived importance of XDH mutations. We also show that, in presence of inorganic NO2-, XOR-driven O2·- production is substantially reduced. We suggest that targeting enzyme activity to enhance the NO2--reductase profile in those carrying such mutations may provide novel therapeutic options, particularly in cardiovascular disease.


Asunto(s)
Nitritos , Xantina Deshidrogenasa , Humanos , Xantina Deshidrogenasa/genética , Xantina Deshidrogenasa/metabolismo , Nitritos/metabolismo , Óxido Nítrico/metabolismo , Oxidorreductasas/metabolismo , Dióxido de Nitrógeno , Peróxido de Hidrógeno , Oxidación-Reducción , Ácido Úrico/metabolismo , Mutación , Xantina Oxidasa/metabolismo
3.
Pharmacol Rev ; 72(3): 692-766, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32576603

RESUMEN

In contrast to nitric oxide, which has well established and important roles in the regulation of blood flow and thrombosis, neurotransmission, the normal functioning of the genitourinary system, and the inflammation response and host defense, its oxidized metabolites nitrite and nitrate have, until recently, been considered to be relatively inactive. However, this view has been radically revised over the past decade and more. Much evidence has now accumulated demonstrating that nitrite serves as a storage form of nitric oxide, releasing nitric oxide preferentially under acidic and/or hypoxic conditions but also occurring under physiologic conditions: a phenomenon that is catalyzed by a number of distinct mammalian nitrite reductases. Importantly, preclinical studies demonstrate that reduction of nitrite to nitric oxide results in a number of beneficial effects, including vasodilatation of blood vessels and lowering of blood pressure, as well as cytoprotective effects that limit the extent of damage caused by an ischemia/reperfusion insult, with this latter issue having been translated more recently to the clinical setting. In addition, research has demonstrated that the other main metabolite of the oxidation of nitric oxide (i.e., nitrate) can also be sequentially reduced through processing in vivo to nitrite and then nitrite to nitric oxide to exert a range of beneficial effects-most notably lowering of blood pressure, a phenomenon that has also been confirmed recently to be an effective method for blood pressure lowering in patients with hypertension. This review will provide a detailed description of the pathways involved in the bioactivation of both nitrate and nitrite in vivo, their functional effects in preclinical models, and their mechanisms of action, as well as a discussion of translational exploration of this pathway in diverse disease states characterized by deficiencies in bioavailable nitric oxide. SIGNIFICANCE STATEMENT: The past 15 years has seen a major revision in our understanding of the pathways for nitric oxide synthesis in the body with the discovery of the noncanonical pathway for nitric oxide generation known as the nitrate-nitrite-nitric oxide pathway. This review describes the molecular components of this pathway, its role in physiology, potential therapeutics of targeting this pathway, and their impact in experimental models, as well as the clinical translation (past and future) and potential side effects.


Asunto(s)
Nitratos/metabolismo , Nitratos/farmacología , Óxido Nítrico/metabolismo , Nitritos/metabolismo , Animales , Presión Sanguínea/efectos de los fármacos , Humanos , Ensayos Clínicos Controlados Aleatorios como Asunto , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...