Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochem Pharmacol ; 211: 115505, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36931349

RESUMEN

Heat shock proteins (Hsp) and FoxM1 have significant roles in carcinogenesis. According to their relative molecular weight, Hsps are divided into Hsp110, Hsp90, Hsp70, Hsp60, Hsp40, and small Hsps. Hsp70 can play essential functions in cancer initiation and is overexpressed in several human cancers. Hsp70, in combination with cochaperones HIP and HOP, refolds partially denatured proteins and acts as a cochaperone for Hsp90. Also, Hsp70, in combination with BAG3, regulates the FoxM1 signaling pathway. FoxM1 protein is a transcription factor of the Forkhead family that is overexpressed in most human cancers and is involved in many cancers' development features, including proliferation, migration, invasion, angiogenesis, metastasis, and resistance to apoptosis. This review discusses the Hsp70, Hsp90, and FoxM1 structure and function, the known Hsp70 cochaperones, and Hsp70, Hsp90, and FoxM1 inhibitors.


Asunto(s)
Proteínas de Choque Térmico , Neoplasias , Humanos , Proteínas de Choque Térmico/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Proteínas del Choque Térmico HSP40/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteína Forkhead Box M1/genética , Proteína Forkhead Box M1/metabolismo
2.
Amino Acids ; 55(3): 337-348, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36617370

RESUMEN

To design and develop novel antimicrobial agents, a series of phthalimide-triazine-based derivatives (6a-6e) were synthesized, characterized and evaluated for their potential antibacterial activities. The compounds were prepared through reaction of 6-phenyl-1,3,5-triazine-2,4-diamine with phthalimide moiety containing aliphatic amino acid. Structural analysis of the synthesized compounds was carried out by various characterization techniques such as FT-IR, 1H and 13C-NMR and mass spectroscopy. After the confirmation of the structure, the antibacterial screening of the synthesized compounds was performed against two strains of Gram-positive (Staphylococcus aureus, and Bacillus subtilis) and two strains of Gram-negative (Escherichia coli and Salmonella enteritidis) bacteria. The results of antimicrobial activity showed that compound 6d was the most active against all the tested strains of microorganisms with the MIC value 1.25 µg/µl. The synthesized compounds were docked into the binding sites of E. coli-DNA gyrase B and S. aureus-DNA gyrase complex to explore their theoretically binding mode and possible interactions of these ligands with these two targets. Docking study showed the importance of both hydrogen bonding and hydrophobic interactions as a key interaction with the targets. Based on the obtained results, the hybrid derivatives of triazine and phthalimide could be regarded as efficient candidates for further molecular developments of antimicrobial agents.


Asunto(s)
Girasa de ADN , Escherichia coli , Simulación del Acoplamiento Molecular , Girasa de ADN/metabolismo , Escherichia coli/metabolismo , Staphylococcus aureus , Espectroscopía Infrarroja por Transformada de Fourier , Antibacterianos/farmacología , Antibacterianos/química , Ftalimidas/farmacología , Aminoácidos , Triazinas/farmacología , Triazinas/química , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Relación Estructura-Actividad
3.
J Res Med Sci ; 27: 68, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36353342

RESUMEN

Quinazolinone and quinazoline have been shown different pharmacological activities, namely anticancer, anti-inflammatory, anti-hyperlipidemia, analgesic, antihypertensive, and antibacterial. On the other hand, molecular hybridization is a structural modification technique in the design of new ligands which consist of two or more pharmacologically active molecules in one structure. Therefore, due to the importance of the biological activities of quinazolinones for the development of new therapeutic agents, this review emphasizes current findings on various quinazolinone-based hybrids in medicinal chemistry. Moreover, it highlights the biological activities and structure-activity relationship of these hybrids.

4.
Korean J Pain ; 35(4): 440-446, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36175343

RESUMEN

Background: The authors showed in a previous study that some novel triazine derivatives had an anti-inflammatory effect. The present study was designed to evaluate the antinociceptive effect of five out of nine compounds including two vanillin-triazine (5c and 5d) and three phenylpyrazole-triazine (10a, 10b, 10e) derivatives which showed the best anti-inflammatory effect. Methods: Male Swiss mice (25-30 g) were used. To assess the antinociceptive effect, acetic acid-writhing, formalin, and hot plate tests were used after intraperitoneal injection of each compound. Results: All compounds significantly (P < 0.001) reduced acetic acid-induced writhing at tested doses (50, 100, and 200 mg/kg). Also, the percent inhibition of writhing in the acetic acid test showed that at the maximum tested dose of these compounds (200 mg/kg), the order of potencies is as follows: 10b > 10a > 10e > 5d > 5c. In the formalin test, compounds 5d, 10a, and 10e showed an antinociceptive effect in the acute phase and all compounds were effective in the chronic phase. In the hot plate test, compounds 5c, 5d, and 10a demonstrated an antinociceptive effect. Conclusions: The results clearly showed that both vanillin-triazine and phenylpyrazole-triazine derivatives had an antinociceptive effect. Also, some compounds which showed activity in the early phase of formalin test as well as in the hot plate test could control acute pain in addition to chronic or inflammatory pain.

5.
J Microencapsul ; 39(5): 433-451, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35762905

RESUMEN

AIM: This study aimed to develop novel pH-sensitive Glucosamine (Glu) targeted Polydopamine (PDA) coated mesoporous silica (SBA-15) nanoparticles (NPs) for selective delivery of anticancer Anderson-type manganese polyoxomolybdate (POMo) to breast cancer. METHODS: The POMo@SBA-PDA-Glu NPs were prepared via direct hydrothermal synthesis of SBA, POMo loading, in situ PDA post functionalization, and Glu anchoring; the chemical structures were fully studied by different characterisation methods. The anticancer activity was studied by MTT method and Annexin V-FITC apoptosis detection kit. RESULTS: The optimised NPs had a hydrodynamic size (HS) of 195 nm, a zeta potential (ZP) of -18.9 mV, a loading content percent (LC%) of 45%, and a pH-responsive release profile. The targeted NPs showed increased anticancer activity against breast cancer cell lines compared to the free POMo with the highest cellular uptake and apoptosis level in the MDA-MB-231 cells. CONCLUSIONS: POMo@SBA-PDA-Glu NPs could be a promising anticancer candidate for further studies.


Asunto(s)
Neoplasias de la Mama , Nanopartículas , Neoplasias de la Mama/tratamiento farmacológico , Portadores de Fármacos/química , Femenino , Glucosamina , Humanos , Concentración de Iones de Hidrógeno , Indoles , Nanopartículas/química , Polímeros , Porosidad , Dióxido de Silicio/química
6.
Res Pharm Sci ; 17(6): 635-656, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36704430

RESUMEN

Background and purpose: FoxM1 and Hsp70 proteins are highly expressed in many cancers. Thus, their inhibition serves as Bonafede targets in cancer treatment. Experimental approach: FDI-6, an inhibitor of FoxM1, was selected as a template, and based on its structure, a new library from the ZINC database was obtained. Virtual screening was then performed using the created pharmacophore model. The second virtual screening phase was conducted with molecular docking to get the best inhibitor for both FoxM1 and Hsp70 active sites. In silico, ADMET properties were also calculated. Finally, molecular dynamics simulation was performed on the best ligand, ZINC1152745, for both Hsp70 and FoxM1 proteins during 100 ns. Findings / Results: The results of this study indicated that ZINC1152745 was stable in the active site of both proteins, Hsp70 and FoxM1. The final scaffold identified by the presented computational approach could offer a hit compound for designing promising anticancer agents targeting both FoxM1 and Hsp70. Conclusion and implications: Molecular dynamics simulations were performed on ZINC1152745 targeting FoxM1 and Hsp70 active sites. The results of several hydrogen bonds, the radius of gyration, RMSF, RMSD, and free energy during the simulations showed good stability of ZINC1152745 with FoxM1 and Hsp70.

7.
Sci Rep ; 11(1): 20776, 2021 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-34675367

RESUMEN

In this work, new derivatives of biphenyl pyrazole-benzofuran hybrids were designed, synthesized and evaluated in vitro through enzymatic assay for inhibitory effect against α-glucosidase activity. Newly identified inhibitors were found to be four to eighteen folds more active with IC50 values in the range of 40.6 ± 0.2-164.3 ± 1.8 µM, as compared to the standard drug acarbose (IC50 = 750.0 ± 10.0 µM). Limited Structure-activity relationship was established. A kinetic binding study indicated that most active compound 8e acted as the competitive inhibitors of α-glucosidase with Ki = 38 µM. Molecular docking has also been performed to find the interaction modes responsible for the desired inhibitory activity. As expected, all pharmacophoric features, used in the design of the hybrid, are involved in the interaction with the active site of the enzyme. In addition, molecular dynamic simulations showed compound 8e oriented vertically into the active site from mouth to the bottom and stabilized the enzyme domains by interacting with the interface of domain A and domain B and the back side of the active site while acarbose formed non-binding interaction with the residue belong to the domain A of the enzyme.


Asunto(s)
Benzofuranos/química , Diseño de Fármacos , Inhibidores de Glicósido Hidrolasas/farmacología , Pirazoles/química , Inhibidores de Glicósido Hidrolasas/química , Técnicas In Vitro , Modelos Moleculares , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad
8.
Res Pharm Sci ; 16(5): 455-463, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34522193

RESUMEN

BACKGROUND AND PURPOSE: Pyridopyrimidine and its derivatives have a variety of chemical and biological significances. Thiazole-containing compounds have also been reported to have a wide range of biological activities. Due to the valuable cytotoxic effects of both thiazole and pyridopyrimidinone derivatives, a series of pyridopyrimidinone-thiazole hybrids were synthesized in the present study. EXPERIMENTAL APPROACH: Briefly, different acyl chlorides were reacted with 2-amino nicotinic acid followed by anhydride acetic to give the corresponding pyridobenzoxazinones. The aminothiazole derivative G was also prepared via a multistep procedure and incorporated into the benzoxazinones to furnish the target pyridopyrimidinone, K1-K5. Furthermore, the cytotoxic activity of the final compounds was determined against MCF-7 and HeLa cell lines using MTT assay. FINDINGS/RESULTS: The results indicated that aromatic substitution on C2 of pyridopyrimidine nucleus was in favor of cytotoxic activity on both cell lines, of which, compound K5 bearing a chlorophenyl group showed the highest cytotoxicity. CONCLUSION AND IMPLICATIONS: The results of the present study are valuable in terms of synthesis of hybrid molecules and also cytotoxic evaluations which can be useful for future investigations about the design of novel pyridopyrimidinone-thiazole hybrids possessing better cytotoxic activities.

9.
Res Pharm Sci ; 15(5): 454-462, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33628287

RESUMEN

BACKGROUND AND PURPOSE: Oxadiazole-derived compounds have been shown to have a wide range of pharmacological activities. 2, 5-Disubstituted 1, 3, 4-oxadiazole derivatives have occupied a specific place in the design of anti-proliferative agents. In the present work a series of 2, 5-disubstituted 1, 3, 4-oxadiazoles derivatives containing amide group has been synthesized via a two-step reaction. EXPERIMENTAL APPROACH: A mixture of substituted carboxylic acid derivatives, semicarbazide, and phosphorus oxychloride in reflux condition yielded 2-amino-5-aryl-1, 3, 4-oxadiazole derivatives. Acylation of the amino group of the resultant oxadiazole with 6-chloronicotinoyl chloride in dry tetrahydrofuran/pyridine afforded the final products. The synthesized molecules were docked in the active sites of the epidermal growth factor receptor tyrosine kinase domain (PDB: 1M17) crystal structure to study the possible interactions with the active site. Cytotoxic activities of final products against HeLa and MCF-7 cells were also assessed by MTT assay. FINDINGS/RESULTS: Compounds IIb, IIc, and IIe had a considerable cytotoxic activity with IC50 values of 19.9, 35, and 25.1 µM, respectively against HeLa cells. The highest docking score was -7.89 kcal/mol for compound IIe. CONCLUSION AND IMPLICATIONS: Compound IIe exhibited remarkable cytotoxic activity against the two tested cell lines particularly HeLa cells which was in accordance with the in silico ΔG bind result but further evaluations are necessary to prove these findings.

10.
Res Pharm Sci ; 14(3): 247-254, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31160902

RESUMEN

Quinazolinone and benzimidazole are both fused heterocyclic compounds which have shown valuable biological properties including cytotoxic, antibacterial, and antifungal activities. In this study, a series of novel quinazolinone derivatives substituted with benzimidazole were synthesized in two parts. In the first part 2 - phenyl - 1H - benzimidazol - 6 - amine (4) was synthesized from the reaction of 4-nitro-o-phenylenediamine and benzoic acid. In the second part, new 3-(2-phenyl-1H benzoimidazol-5-yl)- 3H-quinazolin-4-one derivatives (8a-8f) were also prepared. Finally compound 4 was reacted with the different benzoxazinone derivatives (8a-8f) to give the target compounds. The structures of the synthesized compounds were confirmed by IR and 1HNMR. Cytotoxic activities of the final compounds were assessed at 100, 200, 300, 400, and 500 µM against MCF-7 and HeLa cell lines using the MTT colorimetric assay. Almost all compounds exhibited good cytotoxic activity against both cell lines. Compound 9d demonstrated the highest cytotoxic activity against MCF7 and Hela cell lines with IC50 70 µM and 50 µM, respectively.

11.
Res Pharm Sci ; 13(5): 450-459, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30271447

RESUMEN

Nitrogen-rich heterocyclic compounds represent a unique class of chemicals with especial properties and have been modified to design novel pharmaceutically active compounds. In this study, a series of novel quinazolinone derivatives with substituted quinoxalindione were synthesized in two parts. In the first part, 6-(4-amino-3-methylphenoxy)quinoxaline-2,3(1H,4H)-dione was prepared from para-amino -m-crozol in 5 steps. In the next part, 2-alkyl-4H-benzo[d][1,3]oxazin-4-one derivatives were obtained from antranilic acid. Then reaction of 6-(4-amino-3-methylphenoxy)quinoxaline-2,3(1H,4H)-dione with 2-alkyl-4H-benzo[d][1,3]oxazin-4-one derivatives resulted in the production of final componds. The structures of synthesized compounds were confirmed by IR and 1H-NMR. Cytotoxic activity of the compounds were evaluated at 0.1, 1, 10, 50 and 100 µM concentrations against MCF-7 and HeLa cell lines using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) colorimetric assay. Almost all new compounds showed cytotoxic activity in both cell lines. Among tested compounds, 11g displayed the highest cytotoxic activity against both cell lines.

12.
Res Pharm Sci ; 13(2): 168-176, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29606971

RESUMEN

A series of novel sorafenib analogues containing a quinoxalinedione ring and amide linker were synthesized. A total of 9 novel compounds in 6 synthetic steps were synthesized. Briefly, the amino group of p-aminophenol was first protected which then followed by O-arylation with 5-chloro-2-nitroaniline to provide compound d. Reduction of the nitro group of compound d and cyclization of the diamine group of compound e with oxalic acid afforded compound f which on deacetylation yeilded compound g. Then compound g was reacted with different acyl halides to afford the target compounds 1h-1p. Chemical structures of synthesized compounds were confirmed by 1H NMR and FT-IR analysis. All compounds were evaluated at 1, 10, 50 and 100 µM concentrations for their cytotoxicity against HeLa and MCF-7 cancer cell lines. Some of the compounds showed good cytotoxic activity, especially compounds 1i and 1k-1n with the IC50 values of 19, 16, 22, 18, and 16 µM against MCF-7 cell line and 20, 18, 25, 20, and 18 µM against HeLa cell line, respectively.

13.
Res Pharm Sci ; 13(1): 82-92, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29387115

RESUMEN

Diaryl urea derivatives have exhibited a broad spectrum of biochemical effects and pharmaceutical applications. Several diaryl urea derivatives such as sorafenib, regorafenib, linifanib, and tivozanib and lenvatinib are in clinical trial or clinical use. Therefore, development of small molecules within the diaryl urea scaffold with the ability of binding to variety of enzymes and receptors in the biological system are an interesting topic for researchers. Sorafenib as a diaryl urea derivative is a well-known anticancer agent. Corresponding to available information about biological activities of quinoxaline moieties, based on sorafenib scaffold, several structures were designed by replacement of pyridyl carboxamide group of sorafenib with quinoxalindione moiety. A total of 14 novel compounds in 7 synthetic steps were synthesized. Briefly, the amino group of p-aminophenol was first protected followed by O-arylation of 4-acetamidophenol with 5-chloro-2-nitroaniline to provide 5-(4-acetamidophenoxy)-2-nitroaniline. Reduction of the nitro group of 5-(4-acetamidophenoxy)-2-nitroaniline and cyclization of diamine N-(4-(3,4-diaminophenoxy) phenyl) acetamides with oxalic acid afforded compound N-(4-((2,3-dioxo-1,2,3,4-tetrahydroquinoxalin-6-yl)oxy)phenyl) acetamides which on deacetylation gave compounds 6-(4-aminophenoxy) quinoxaline-2,3 (1H, 4H)-diones. Then resultant compounds, 6-(4-aminophenoxy) quinoxaline-2,3 (1H, 4H)-diones were reacted by appropriate isocyanates/ carbamates to give the target compounds 1-(4-((2,3-dioxo-1,2,3,4-tetrahydroquinoxalin-6-yl)oxy)phenyl)-3-phenylureas. The structures of compounds confirmed by proton nuclear magnetic resonance (1H NMR), mass spectrum and Fourier transform infrared (FT-IR).

14.
Chem Biodivers ; 15(3): e1700518, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29292595

RESUMEN

A series of hybrid aldimine-type Schiff base derivatives including trimethoxyphenyl ring and 1,2,4-triazole-3-thiol/thione were designed as tubulin inhibitors. The molecular docking simulations on tubulin complex (PDB: 1SA0) revealed that derivatives with nitro and/or chloro or dimethylamino substitutes (4-nitro, 2-nitro, 3-nitro, 4-Cl-3-nitro, and 4-Me2 N) on the aldehyde ring were the best compounds with remarkable binding energies (-9.09, -9.07, -8.63, -8.11, and -8.07 kcal mol-1 , respectively) compared to colchicine (-8.12 kcal mol-1 ). These compounds were also showed remarkable binding energies from -10.66 to -9.79 and -10.12 to -8.95 kcal mol-1 on human (PDB: 1PD8) and Candida albicans (PDB: 3QLS) DHFR, respectively. The obtained results of cytotoxic activities against HT1080, HepG2, HT29, MCF-7, and A549 cancer cell lines indicated that 4-nitro and 2-nitro substituted compounds were the most effective agents by mean IC50 values of 11.84 ± 1.01 and 19.92 ± 1.36 µm, respectively. 4-Nitro substituted compound (5 µm) and 2-nitro substituted compound (30 µm) were able to strongly inhibit the tubulin polymerization compared to colchicine (5 µm) and 4-nitro substituted compound displayed IC50 values of 0.16 ± 0.01 µm compared to that of colchicine (0.19 ± 0.01 µm). This compound also showed the lowest MIC values on all tested microbial strains including three Gram-positive, four Gram-negative, and three yeast pathogens.


Asunto(s)
Antibacterianos/farmacología , Antifúngicos/farmacología , Antineoplásicos/farmacología , Diseño de Fármacos , Moduladores de Tubulina/farmacología , Tubulina (Proteína)/metabolismo , Antibacterianos/síntesis química , Antibacterianos/química , Antifúngicos/síntesis química , Antifúngicos/química , Antineoplásicos/síntesis química , Antineoplásicos/química , Candida/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cryptococcus neoformans/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Humanos , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Estructura Molecular , Polimerizacion/efectos de los fármacos , Bases de Schiff/síntesis química , Bases de Schiff/química , Bases de Schiff/farmacología , Relación Estructura-Actividad , Moduladores de Tubulina/síntesis química , Moduladores de Tubulina/química
15.
Res Pharm Sci ; 12(6): 500-509, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29204178

RESUMEN

In this study a series of diarylurea derivatives containing quinoxalindione group were biologically evaluated for their cytotoxic activities using MTT assay against MCF-7 and HepG2 cell lines. Antibacterial activities of these compounds were also evaluated by Microplate Alamar Blue Assay (MABA) against three Gram-negative (Escherichia coli, Pseudomonas aeruginosa and Salmonella typhi), three Gram-positive (Staphylococcus aureus, Bacillus subtilis and Listeria monocitogenes) and one yeast-like fungus (Candida albicans) strain. Furthermore, molecular docking was carried out to study the binding pattern of the compounds to the active site of B-RAF kinase (PDB code: 1UWH). Molecular dynamics simulation was performed on the best ligand (16e) to investigate the ligand binding dynamics in the physiological environment. Cytotoxic evaluation revealed the most prominent cytotoxicity for 6 compounds with IC50 values of 10-18 µM against two mentioned cell lines. None of the synthesized compounds showed significant antimicrobial activity. The obtained results of the molecular docking study showed that all compounds fitted in the binding site of enzyme with binding energy range of -11.22 to -12.69 kcal/mol vs sorafenib binding energy -11.74 kcal/mol as the lead compound. Molecular dynamic simulation indicated that the binding of ligand (16e) was stable in the active site of B-RAF during the simulation.

16.
Iran J Basic Med Sci ; 20(9): 975-989, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29085591

RESUMEN

OBJECTIVES: Hybridization of bioactive natural and synthetic compounds is one of the most promising novel approaches for the design of hit and lead compounds with new molecular structures. In this investigation, a series of novel hybrid structures bearing quinazolinone, benzofuran and imidazolium moieties were designed and synthesized. MATERIALS AND METHODS: Novel hybrid compounds were prepared and their structures were characterized by spectral and analytical data. In order to evaluate the biological activities, the synthesized hybrid compounds were studied for in vitro antibacterial activity against three Gram positive bacteria (Staphylococcus aureu, Bacillus subtilis, Listeria monocitogenes) and three Gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa, Salmonella entritidis) and also, Candida albicans as one yeast-like fungi strain. Cytotoxic activities of the synthesized compounds were also evaluated by the MTT assay in the human breast cancer cell line (MCF-7) and finally docking studies of cytotoxic derivatives were performed on aromatase enzyme. RESULTS: The results of antimicrobial activity showed that compound 14e, with two halogen atoms on quinazolinone and benzofuran was the most active against all the tested strains of microorganisms with the MIC value 16-128 µg/ml. Some of the tested compounds showed good cytotoxicity on MCF-7, and compound 14c with IC50=0.59 micromolar (µM) was found to be the most cytotoxic compound among the studied hybrid derivatives. The docking analysis showed acceptable binding interactions for these compounds. CONCLUSION: Based on the obtained results, the hybrid derivatives of quinazolinone, benzofuran and imidazolium could be regarded as efficient candidates for further molecular developments of anticancer and antimicrobial agents.

17.
Res Pharm Sci ; 12(3): 233-240, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28626481

RESUMEN

In an attempt to identify some new potential leads as anti-breast cancer agents, novel hybrid compounds were designed by molecular hybridization approach. These derivatives were structurally derived from hybrid benzofuran-imidazole and quinazolinone derivatives, which had shown good cytotoxicity against the breast cancer cell line (MCF-7). Since aromatase enzyme (CYP19) is highly expressed in the MCF-7 cell line, the binding of these novel hybrid compounds to aromatase was investigated using the docking method. In this study, due to the positive charge on the imidazole ring of the designed ligands and also, the presence of heme iron in the active site of the enzyme, it was decided to optimize the ligand inside the protein to obtain more realistic atomic charges for it. Quantum mechanical/molecular mechanical (QM/MM) method was used to obtain more accurate atomic charges of ligand for docking calculations by considering the polarization effects of CYP19 on ligands. It was observed that the refitted charge improved the binding energy of the docked compounds. Also, the results showed that these novel hybrid compounds were adopted properly within the aromatase binding site, thereby suggesting that they could be potential inhibitors of aromatase. The main binding modes in these complexes were through hydrophobic and H bond interactions showing agreement with the basic physicochemical features of known anti aromatase compounds. Finally, the complex structures obtained from the docking study were used for single point QM/MM calculations to obtain more accurate electronic interaction energy, considering the electronic polarization of the ligand by its protein environment.

18.
Chem Biodivers ; 14(4)2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28002645

RESUMEN

Cytotoxic and antimicrobial agents structurally based on quinazolinone, benzofuran and imidazole pharmacophores, have been designed and synthesized. Spectral (IR, 1 H-NMR) and elemental analysis data established the structures of these novel 3-[1-(1-benzofuran-2-yl)-2-(4-oxoquinazolin-3(4H)-yl)ethyl]-1-methyl-1H-imidazol-3-ium chloride hybrid derivatives. All the synthesized compounds were evaluated for in vitro cytotoxicity and antimicrobial activities. Cytotoxic evaluation using MTT assay revealed that compounds 12c, 12g and 12i exhibited significant cytotoxicity with IC50 values 1, 1, and 0.57 µm on this cell line, respectively. Biological activity of the synthesized compounds as antibacterial agent were also evaluated against three Gram-negative (Escherichia coli, Pseudomonas aeruginosa and Salmonella typhi), three Gram-positive (Staphylococcus aureus, Bacillus subtilis and Listeria monocitogenes) and one yeast-like fungi (Candida albicans) strains. All compounds 12a - 12i showed slightly higher activity against Gram-positive bacteria than the Gram-negative one. Among the nine new compounds screened, 3-[1-(5-bromo-1-benzofuran-2-yl)-2-(6-chloro-4-oxoquinazolin-3(4H)-yl)ethyl]-1-methyl-1H-imidazol-3-ium chloride (12e) has pronounced higher antimicrobial activity against all tested strains. These results demonstrated potential importance of molecular hybridization in the development of new lead molecules with major cytotoxicity and antimicrobial activity.


Asunto(s)
Antibacterianos/síntesis química , Antineoplásicos/síntesis química , Compuestos Heterocíclicos/síntesis química , Antibacterianos/farmacología , Antineoplásicos/farmacología , Benzofuranos/química , Candida albicans/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Diseño de Fármacos , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Compuestos Heterocíclicos/química , Compuestos Heterocíclicos/farmacología , Humanos , Imidazoles/química , Células MCF-7 , Quinazolinonas/química
19.
Arch Pharm (Weinheim) ; 349(8): 662-81, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27320785

RESUMEN

The present study was planned to design some novel aldimine-type Schiff bases bearing 3,4,5-trimethoxyphenyl and 1,2,4-triazole-3-thione/thiol as potential tubulin polymerization inhibitors. The obtained results of the molecular docking study using the tubulin complex (PDB code: 1SA0) showed that compounds H-25 and H-26 were well fitted in the colchicine binding site of tubulin with binding energies of -8.68 and -8.40 kcal/mol, respectively, in comparison to the main ligand (-8.20 kcal/mol). In parallel, molecular simulations were also performed on five other 3,4,5-trimethoxyphenyl-containing ligand targets including hsp90, VEGFR2, and human and microbial (Staphylococcus aureus and Candida albicans) dihydrofolate reductase, among which H-17, H-45, H-27, H-02, and H-19 were the most suitable compounds, respectively. Evaluation of the cytotoxic effect of the most efficient compounds of the docking steps (H-25) revealed IC50 values of 12.48 ± 1.10, 4.25 ± 0.22, 3.33 ± 0.31, and 9.71 ± 0.75 µM against the HT1080, HT29, MCF-7, and A549 cell lines, respectively, compared to doxorubicin (12.69 ± 1.23, 6.12 ± 0.47, 3.51 ± 0.32, and 6.40 ± 0.31 µM, respectively). The in vitro tubulin polymerization investigation launched compounds H-25 and H-26 as potent antitubulin agents due to their IC50 values of 0.17 ± 0.01 and 10.93 ± 0.43 µM, respectively.


Asunto(s)
Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Moduladores de Tubulina/síntesis química , Moduladores de Tubulina/farmacología , Tubulina (Proteína)/química , Antineoplásicos/química , Antineoplásicos/metabolismo , Sitios de Unión , Bioensayo , Candida albicans/enzimología , Línea Celular Tumoral/efectos de los fármacos , Colchicina/metabolismo , Diseño de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Concentración 50 Inhibidora , Simulación del Acoplamiento Molecular , Bases de Schiff/síntesis química , Bases de Schiff/química , Bases de Schiff/metabolismo , Bases de Schiff/farmacología , Staphylococcus aureus/enzimología , Relación Estructura-Actividad , Tetrahidrofolato Deshidrogenasa/metabolismo , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/química , Moduladores de Tubulina/metabolismo
20.
J Res Med Sci ; 20(11): 1094-104, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26941815

RESUMEN

Benzofuran as an important heterocyclic compound is extensively found in natural products as well as synthetic materials. Since benzofuran drivatives display a diverse array of pharmacological activities, an interest in developing new biologically active agents from benzofuran is still under consideration. This review highlights recent findings on biological activities of benzofuran derivatives as antimicrobial and antibreast cancer agents and lays emphasis on the importance of benzofurans as a major source for drug design and development.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...