Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PLoS One ; 19(1): e0297166, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38285689

RESUMEN

Src is a non-receptor tyrosine kinase participating in a range of neuronal processes, including synaptic plasticity. We have recently shown that the amounts of total Src and its two phosphorylated forms, at tyrosine-416 (activated) and tyrosine-527 (inhibited), undergoes time-dependent, region-specific learning-related changes in the domestic chick forebrain after visual imprinting. These changes occur in the intermediate medial mesopallium (IMM), a site of memory formation for visual imprinting, but not the posterior pole of the nidopallium (PPN), a control brain region not involved in imprinting. Src interacts with mitochondrial genome-coded NADH dehydrogenase subunit 2 (NADH2), a component of mitochondrial respiratory complex I. This interaction occurs at brain excitatory synapses bearing NMDA glutamate receptors. The involvement of Src-NADH2 complexes in learning and memory is not yet explored. We show for the first time that, independently of changes in total Src or total NADH2, NADH2 bound to Src immunoprecipitated from the P2 plasma membrane-mitochondrial fraction: (i) is increased in a learning-related manner in the left IMM 1 h after the end of training; (ii), is decreased in the right IMM in a learning-related way 24 h after training. These changes occurred in the IMM but not the PPN. They are attributable to learning occurring during training rather than a predisposition to learn. Learning-related changes in Src-bound NADH2 are thus time- and region-dependent.


Asunto(s)
Impronta Psicológica , NADH Deshidrogenasa , Familia-src Quinasas , Animales , Pollos , Impronta Psicológica/fisiología , Aprendizaje/fisiología , Prosencéfalo/fisiología , Tirosina , Familia-src Quinasas/metabolismo
2.
Physiol Genomics ; 54(1): 22-35, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34766515

RESUMEN

Broad cellular functions and diseases including muscular dystrophy, arrhythmogenic right ventricular cardiomyopathy (ARVC5) and cancer are associated with transmembrane protein43 (TMEM43/LUMA). The study aimed to investigate biological roles of TMEM43 through genetic regulation, gene pathways and gene networks, candidate interacting genes, and up- or downstream regulators. Cardiac transcriptomes from 40 strains of recombinant inbred BXD mice and two parental strains representing murine genetic reference population (GRP) were applied for genetic correlation, functional enrichment, and coexpression network analysis using systems genetics approach. The results were validated in a newly created knock-in Tmem43-S358L mutation mouse model (Tmem43S358L) that displayed signs of cardiac dysfunction, resembling ARVC5 phenotype seen in humans. We found high Tmem43 levels among BXDs with broad variability in expression. Expression of Tmem43 highly negatively correlated with heart mass and heart rate among BXDs, whereas levels of Tmem43 highly positively correlated with plasma high-density lipoproteins (HDL). Through finding differentially expressed genes (DEGs) between Tmem43S358L mutant and wild-type (Tmem43WT) lines, 18 pathways (out of 42 found in BXDs GRP) that are involved in ARVC, hypertrophic cardiomyopathy, dilated cardiomyopathy, nonalcoholic fatty liver disease, Alzheimer's disease, Parkinson's disease, and Huntington's disease were verified. We further constructed Tmem43-mediated gene network, in which Ctnna1, Adcy6, Gnas, Ndufs6, and Uqcrc2 were significantly altered in Tmem43S358L mice versus Tmem43WT controls. Our study defined the importance of Tmem43 for cardiac- and metabolism-related pathways, suggesting that cardiovascular disease-relevant risk factors may also increase risk of metabolic and neurodegenerative diseases via TMEM43-mediated pathways.


Asunto(s)
Displasia Ventricular Derecha Arritmogénica , Proteínas de la Membrana , Animales , Displasia Ventricular Derecha Arritmogénica/diagnóstico , Displasia Ventricular Derecha Arritmogénica/genética , Corazón , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Mutación/genética , Fenotipo
3.
Am J Physiol Heart Circ Physiol ; 320(5): H2130-H2146, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33861145

RESUMEN

The actin-binding sarcomeric nebulette (NEBL) protein provides efficient contractile flexibility via interaction with desmin intermediate filaments. NEBL gene mutations affecting the nebulin repeat (NR) domain are known to induce cardiomyopathy. The study aimed to explore the roles of NEBL in exercise and biomechanical stress response. We ablated exon3 encoding the first NR of Nebl and created global Neblex3-/ex3- knockout mice. Cardiac function, structure, and transcriptome were assessed before and after a 4-wk treadmill regimen. A Nebl-based exercise signaling network was constructed using systems genetics methods. H9C2 and neonatal rat cardiomyocytes (NRCs) expressing wild-type or mutant NEBL underwent cyclic mechanical strain. Neblex3-/ex3- mice demonstrated diastolic dysfunction with preserved systolic function at 6 mo of age. After treadmill running, 4-mo-old Neblex3-/ex3- mice developed concentric cardiac hypertrophy and left ventricular dilation compared with running Nebl+/+ and sedentary Neblex3-/ex3- mice. Disturbance of sarcomeric Z-disks and thin filaments architecture and disruption of intercalated disks and mitochondria were found in exercised Neblex3-/ex3- mice. A Nebl-based exercise signaling network included Csrp3, Des, Fbox32, Jup, Myh6, and Myh7. Disturbed expression of TM1, DES, JUP, ß-catenin, MLP, α-actinin2, and vinculin proteins was demonstrated. In H9C2 cells, NEBL was recruited into focal adhesions at 24-h poststrain and redistributed along with F-actin at 72-h poststrain, suggesting time-dependent redistribution of NEBL in response to strain. NEBL mutations cause desmin disorganization in NRCs upon stretch. We conclude that Nebl's NR ablation causes disturbed sarcomere, Z-disks, and desmin organization, and prevents NEBL redistribution to focal adhesions in cardiomyocytes, weakening cardiac tolerance to biomechanical stress.NEW & NOTEWORTHY We demonstrate that ablation of first nebulin-repeats of sarcomeric nebulette (Nebl) causes diastolic dysfunction in Neblex3-/ex3- mice. Exercise-induced development of diastolic dysfunction, cardiac hypertrophy and ventricular dilation in knockouts. This was associated with sarcomere disturbance, intercalated disks disruption, and mitochondrial distortion upon stress and altered expression of genes involved in Nebl-based stress network. We demonstrate that G202R and A592 mutations alter actin and desmin expression causing disorganization of desmin filaments upon cyclic strain.


Asunto(s)
Proteínas del Citoesqueleto/metabolismo , Tolerancia al Ejercicio/fisiología , Proteínas con Dominio LIM/metabolismo , Miocitos Cardíacos/metabolismo , Condicionamiento Físico Animal/fisiología , Sarcómeros/metabolismo , Citoesqueleto de Actina/metabolismo , Animales , Cardiomegalia/metabolismo , Proteínas del Citoesqueleto/genética , Proteínas con Dominio LIM/genética , Ratones , Ratones Noqueados , Miocardio/metabolismo , Ratas , Estrés Mecánico
4.
J Mol Med (Berl) ; 99(1): 57-73, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33201259

RESUMEN

Mitochondria are recognized as the main source of ATP to meet the energy demands of the cell. ATP production occurs by oxidative phosphorylation when electrons are transported through the electron transport chain (ETC) complexes and develop the proton motive force across the inner mitochondrial membrane that is used for ATP synthesis. Studies since the 1960s have been concentrated on the two models of structural organization of ETC complexes known as "solid-state" and "fluid-state" models. However, advanced new techniques such as blue-native gel electrophoresis, mass spectroscopy, and cryogenic electron microscopy for analysis of macromolecular protein complexes provided new data in favor of the solid-state model. According to this model, individual ETC complexes are assembled into macromolecular structures known as respiratory supercomplexes (SCs). A large number of studies over the last 20 years proposed the potential role of SCs to facilitate substrate channeling, maintain the integrity of individual ETC complexes, reduce electron leakage and production of reactive oxygen species, and prevent excessive and random aggregation of proteins in the inner mitochondrial membrane. However, many other studies have challenged the proposed functional role of SCs. Recently, a third model known as the "plasticity" model was proposed that partly reconciles both "solid-state" and "fluid-state" models. According to the "plasticity" model, respiratory SCs can co-exist with the individual ETC complexes. To date, the physiological role of SCs remains unknown, although several studies using tissue samples of patients or animal/cell models of human diseases revealed an associative link between functional changes and the disintegration of SC assembly. This review summarizes and discusses previous studies on the mechanisms and regulation of SC assembly under physiological and pathological conditions.


Asunto(s)
Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Mitocondrias/metabolismo , Animales , Respiración de la Célula , Humanos
5.
Cells ; 9(2)2020 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-32098394

RESUMEN

The main purpose of the review article is to assess the contributions of telomere length and telomerase activity to the cardiac function at different stages of development and clarify their role in cardiac disorders. It has been shown that the telomerase complex and telomeres are of great importance in many periods of ontogenesis due to the regulation of the proliferative capacity of heart cells. The review article also discusses the problems of heart regeneration and the identification of possible causes of dysfunction of telomeres and telomerase.


Asunto(s)
Envejecimiento/metabolismo , Miocitos Cardíacos/metabolismo , Organogénesis/fisiología , Regeneración/fisiología , Telomerasa/metabolismo , Homeostasis del Telómero/fisiología , Telómero/metabolismo , Adulto , Animales , Animales Recién Nacidos , Proliferación Celular/fisiología , Humanos
6.
Mitochondrion ; 50: 71-81, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31669621

RESUMEN

Mitochondria have been widely accepted as the main source of ATP in the cell. The inner mitochondrial membrane (IMM) is important for the maintenance of ATP production and other functions of mitochondria. The electron transport chain (ETC) generates an electrochemical gradient of protons known as the proton-motive force across the IMM and thus produces the mitochondrial membrane potential that is critical to ATP synthesis. One of the main factors regulating the structural and functional integrity of the IMM is the changes in the matrix volume. Mild (reversible) swelling regulates mitochondrial metabolism and function; however, excessive (irreversible) swelling causes mitochondrial dysfunction and cell death. The central mechanism of mitochondrial swelling includes the opening of non-selective channels known as permeability transition pores (PTPs) in the IMM by high mitochondrial Ca2+ and reactive oxygen species (ROS). The mechanisms of reversible and irreversible mitochondrial swelling and transition between these two states are still unknown. The present study elucidates an upgraded biophysical model of reversible and irreversible mitochondrial swelling dynamics. The model provides a description of the PTP regulation dynamics using an additional differential equation. The rigidity tensor was used in numerical simulations of the mitochondrial parameter dynamics with different initial conditions defined by Ca2+ concentration in the sarco/endoplasmic reticulum. We were able to estimate the values of the IMM rigidity tensor components by fitting the model to the previously reported experimental data. Overall, the model provides a better description of the reversible and irreversible mitochondrial swelling dynamics.


Asunto(s)
Muerte Celular/fisiología , Simulación por Computador , Mitocondrias/fisiología , Membranas Mitocondriales/fisiología , Dilatación Mitocondrial/fisiología , Animales , Fenómenos Biofísicos , Potencial de la Membrana Mitocondrial , Modelos Biológicos
8.
Cell Stem Cell ; 24(4): 621-636.e16, 2019 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-30930145

RESUMEN

Tafazzin (TAZ) is a mitochondrial transacylase that remodels the mitochondrial cardiolipin into its mature form. Through a CRISPR screen, we identified TAZ as necessary for the growth and viability of acute myeloid leukemia (AML) cells. Genetic inhibition of TAZ reduced stemness and increased differentiation of AML cells both in vitro and in vivo. In contrast, knockdown of TAZ did not impair normal hematopoiesis under basal conditions. Mechanistically, inhibition of TAZ decreased levels of cardiolipin but also altered global levels of intracellular phospholipids, including phosphatidylserine, which controlled AML stemness and differentiation by modulating toll-like receptor (TLR) signaling.


Asunto(s)
Leucemia Mieloide Aguda/metabolismo , Mitocondrias/enzimología , Fosfolípidos/metabolismo , Factores de Transcripción/metabolismo , Aciltransferasas , Animales , Línea Celular Tumoral , Doxorrubicina/farmacología , Femenino , Humanos , Leucemia Mieloide Aguda/patología , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Ratones Transgénicos , Transducción de Señal/efectos de los fármacos , Receptores Toll-Like/metabolismo , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/deficiencia
9.
Int J Mol Sci ; 19(11)2018 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-30400386

RESUMEN

Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors that bind to DNA and regulate transcription of genes involved in lipid and glucose metabolism. A growing number of studies provide strong evidence that PPARs are the promising pharmacological targets for therapeutic intervention in various diseases including cardiovascular disorders caused by compromised energy metabolism. PPAR agonists have been widely used for decades as lipid-lowering and anti-inflammatory drugs. Existing studies are mainly focused on the anti-atherosclerotic effects of PPAR agonists; however, their role in the maintenance of cellular bioenergetics remains unclear. Recent studies on animal models and patients suggest that PPAR agonists can normalize lipid metabolism by stimulating fatty acid oxidation. These studies indicate the importance of elucidation of PPAR agonists as potential pharmacological agents for protection of the heart from energy deprivation. Here, we summarize and provide a comprehensive analysis of previous studies on the role of PPARs in the heart under normal and pathological conditions. In addition, the review discusses the PPARs as a therapeutic target and the beneficial effects of PPAR agonists, particularly bezafibrate, to attenuate cardiomyopathy and heart failure in patients and animal models.


Asunto(s)
Aterosclerosis/tratamiento farmacológico , Cardiomiopatías/tratamiento farmacológico , Cardiotónicos/uso terapéutico , Metabolismo Energético/efectos de los fármacos , Insuficiencia Cardíaca/prevención & control , Receptores Activados del Proliferador del Peroxisoma/agonistas , Animales , Antiinflamatorios/uso terapéutico , Aterosclerosis/genética , Aterosclerosis/metabolismo , Aterosclerosis/patología , Bezafibrato/uso terapéutico , Cardiomiopatías/genética , Cardiomiopatías/metabolismo , Cardiomiopatías/patología , Metabolismo Energético/genética , Ácidos Grasos/metabolismo , Regulación de la Expresión Génica , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , Humanos , Hipolipemiantes/uso terapéutico , Metabolismo de los Lípidos/efectos de los fármacos , Metabolismo de los Lípidos/genética , Oxidación-Reducción , Receptores Activados del Proliferador del Peroxisoma/genética , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Transducción de Señal
10.
JCI Insight ; 3(22)2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30429366

RESUMEN

The mitochondrial Ca2+ uniporter (MCU) complex mediates acute mitochondrial Ca2+ influx. In skeletal muscle, MCU links Ca2+ signaling to energy production by directly enhancing the activity of key metabolic enzymes in the mitochondria. Here, we examined the role of MCU in skeletal muscle development and metabolic function by generating mouse models for the targeted deletion of Mcu in embryonic, postnatal, and adult skeletal muscle. Loss of Mcu did not affect muscle growth and maturation or otherwise cause pathology. Skeletal muscle-specific deletion of Mcu in mice also did not affect myofiber intracellular Ca2+ handling, but it did inhibit acute mitochondrial Ca2+ influx and mitochondrial respiration stimulated by Ca2+, resulting in reduced acute exercise performance in mice. However, loss of Mcu also resulted in enhanced muscle performance under conditions of fatigue, with a preferential shift toward fatty acid metabolism, resulting in reduced body fat with aging. Together, these results demonstrate that MCU-mediated mitochondrial Ca2+ regulation underlies skeletal muscle fuel selection at baseline and under enhanced physiological demands, which affects total homeostatic metabolism.


Asunto(s)
Canales de Calcio/metabolismo , Calcio/metabolismo , Músculo Esquelético/metabolismo , Animales , Canales de Calcio/genética , Señalización del Calcio , Metabolismo Energético , Femenino , Marcación de Gen , Masculino , Ratones , Ratones Transgénicos , Músculo Esquelético/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA