Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Intervalo de año de publicación
1.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-1032124

RESUMEN

Objective@# Female sex workers (FSWs) are at high risk of human papillomavirus (HPV) infections and cervical cancer due to their high number of sexual partners. The objectives of this study were to determine the prevalence of HPV and identify risk factors for high-risk HPV infection among FSWs in Hanoi and Ho Chi Minh City (HCMC), Viet Nam.@*Methods@#A cross-sectional study was conducted in Hanoi and HCMC between December 2017 and May 2018. We surveyed and screened 699 FSWs aged ≥18 years for HPV infection and abnormal cytology. A multivariable modified Cox regression model was used to determine risk factors for high-risk HPV infection.@*Results@#The overall prevalence of any HPV, high-risk HPV and HPV-16/18 infection in the 699 FSWs was 26.3%, 17.6% and 4.0%, respectively, and were similar in both cities. Multiple infections were identified in 127 participants (69.0%).HPV-52 was the most prevalent (7%), followed by HPV-58 (6%). Abnormal cytology was detected in 91 participants (13.0%). FSWs who are divorced (adjusted prevalence ratio [aPR]: 1.96, 95% confidence interval [CI]: 1.01–3.81), widowed (aPR: 3.26, 95% CI: 1.49–7.12) or living alone (aPR: 1.85, 95% CI: 1.01–3.39) were associated with a higher prevalence of high-risk HPV infection.

2.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21257973

RESUMEN

BackgroundDuring the COVID-19 pandemic, the UK government imposed public health policies in England to reduce social contacts in hopes of curbing virus transmission. We measured contact patterns weekly from March 2020 to March 2021 to estimate the impact of these policies, covering three national lockdowns interspersed by periods of lower restrictions. MethodsData were collected using online surveys of representative samples of the UK population by age and gender. We calculated the mean daily contacts reported using a (clustered) bootstrap and fitted a censored negative binomial model to estimate age-stratified contact matrices and estimate proportional changes to the basic reproduction number under controlled conditions using the change in contacts as a scaling factor. ResultsThe survey recorded 101,350 observations from 19,914 participants who reported 466,710 contacts over 53 weeks. Contact patterns changed over time and by participants age, personal risk factors, and perception of risk. The mean of reported contacts among adults have reduced compared to previous surveys with adults aged 18 to 59 reporting a mean of 2.39 (95% CI 2.20 - 2.60) contacts to 4.93 (95% CI 4.65 - 5.19) contacts, and the mean contacts for school-age children was 3.07 (95% CI 2.89 - 3.27) to 15.11 (95% CI 13.87 - 16.41). The use of face coverings outside the home has remained high since the government mandated use in some settings in July 2020. ConclusionsThe CoMix survey provides a unique longitudinal data set for a full year since the first lockdown for use in statistical analyses and mathematical modelling of COVID-19 and other diseases. Recorded contacts reduced dramatically compared to pre-pandemic levels, with changes correlated to government interventions throughout the pandemic. Despite easing of restrictions in the summer of 2020, mean reported contacts only returned to about half of that observed pre-pandemic.

3.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20159772

RESUMEN

Mathematical models have played a key role in understanding the spread of directly-transmissible infectious diseases such as Coronavirus Disease 2019 (COVID-19), as well as the effectiveness of public health responses. As the risk of contracting directly-transmitted infections depends on who interacts with whom, mathematical models often use contact matrices to characterise the spread of infectious pathogens. These contact matrices are usually generated from diary-based contact surveys. However, the majority of places in the world do not have representative empirical contact studies, so synthetic contact matrices have been constructed using more widely available setting-specific survey data on household, school, classroom, and workplace composition combined with empirical data on contact patterns in Europe. In 2017, the largest set of synthetic contact matrices to date were published for 152 geographical locations. In this study, we update these matrices with the most recent data and extend our analysis to 177 geographical locations. Due to the observed geographic differences within countries, we also quantify contact patterns in rural and urban settings where data is available. Further, we compare both the 2017 and 2020 synthetic matrices to out-of-sample empirically-constructed contact matrices, and explore the effects of using both the empirical and synthetic contact matrices when modelling physical distancing interventions for the COVID-19 pandemic. We found that the synthetic contact matrices reproduce the main traits of the contact patterns in the empirically-constructed contact matrices. Models parameterised with the empirical and synthetic matrices generated similar findings with few differences observed in age groups where the empirical matrices have missing or aggregated age groups. This finding means that synthetic contact matrices may be used in modelling outbreaks in settings for which empirical studies have yet to be conducted. Author summaryThe risk of contracting a directly transmitted infectious disease such as the Coronavirus Disease 2019 (COVID-19) depends on who interacts with whom. Such person-to-person interactions vary by age and locations--e.g., at home, at work, at school, or in the community--due to the different social structures. These social structures, and thus contact patterns, vary across and within countries. Although social contact patterns can be measured using contact surveys, the majority of countries around the world, particularly low- and middle-income countries, lack nationally representative contact surveys. A simple way to present contact data is to use matrices where the elements represent the rate of contact between subgroups such as age groups represented by the columns and rows. In 2017, we generated age- and location-specific synthetic contact matrices for 152 geographical regions by adapting contact pattern data from eight European countries using country-specific data on household size, school and workplace composition. We have now updated these matrices with the most recent data (Demographic Household Surveys, World Bank, UN Population Division) extending the coverage to 177 geographical locations, covering 97.2% of the worlds population. We also quantified contact patterns in rural and urban settings. When compared to out-of-sample empirically-measured contact patterns, we found that the synthetic matrices reproduce the main features of these contact patterns.

4.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20157982

RESUMEN

The dynamics of immunity are crucial to understanding the long-term patterns of the SARS-CoV-2 pandemic. Several cases of reinfection with SARS-CoV-2 have been documented 48-142 days after the initial infection and immunity to seasonal circulating coronaviruses is estimated to be shorter than one year. Using an age-structured, deterministic model, we explore potential immunity dynamics using contact data from the UK population. In the scenario where immunity to SARS-CoV-2 lasts an average of three months for non-hospitalised individuals, a year for hospitalised individuals, and the effective reproduction number after lockdown ends is 1.2 (our worst case scenario), we find that the secondary peak occurs in winter 2020 with a daily maximum of 387,000 infectious individuals and 125,000 daily new cases; three-fold greater than in a scenario with permanent immunity. Our models suggests that longitudinal serological surveys to determine if immunity in the population is waning will be most informative when sampling takes place from the end of the lockdown in June until autumn 2020. After this period, the proportion of the population with antibodies to SARS-CoV-2 is expected to increase due to the secondary wave. Overall, our analysis presents considerations for policy makers on the longer term dynamics of SARS-CoV-2 in the UK and suggests that strategies designed to achieve herd immunity may lead to repeated waves of infection as immunity to reinfection is not permanent.

5.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20122689

RESUMEN

BackgroundMany low- and middle-income countries have implemented control measures against coronavirus disease 2019 (COVID-19). However, it is not clear to what extent these measures explain the low numbers of recorded COVID-19 cases and deaths in Africa. One of the main aims of control measures is to reduce respiratory pathogen transmission through direct contact with others. In this study we collect contact data from residents of informal settlements around Nairobi, Kenya to assess if control measures have changed contact patterns, and estimate the impact of changes on the basic reproduction number (R0). MethodsWe conducted a social contact survey with 213 residents of five informal settlements around Nairobi in early May 2020, four weeks after the Kenyan government introduced enhanced physical distancing measures and a curfew between 7pm and 5am. Respondents were asked to report all direct physical and non-physical contacts made the previous day, alongside a questionnaire asking about the social and economic impact of COVID-19 and control measures. We examined contact patterns by demographic factors, including socioeconomic status. We described the impact of COVID-19 and control measures on income and food security. We compared contact patterns during control measures to patterns from non-pandemic periods to estimate the change in R0. FindingsWe estimate that control measures reduced physical and non-physical contacts, reducing the R0 from around 2.6 to between 0.5 and 0.7, depending on the pre-COVID-19 comparison matrix used. Masks were worn by at least one person in 92% of contacts. Respondents in the poorest socioeconomic quintile reported 1.5 times more contacts than those in the richest. 86% of respondents reported a total or partial loss of income due to COVID-19, and 74% reported eating less or skipping meals due to having too little money for food. InterpretationCOVID-19 control measures have had a large impact on direct contacts and therefore transmission, but have also caused considerable economic and food insecurity. Reductions in R0 are consistent with the linear epidemic growth in Kenya and other sub-Saharan African countries that implemented similar, early control measures. However, negative and inequitable impacts on economic and food security may mean control measures are not sustainable in the longer term. Research in context Evidence before this studyWe conducted a PubMed search on 6 June 2020 with no language restrictions for studies published since inception, using the search terms ("social mix*" OR "social cont*" OR "contact pattern*) AND ("covid*"). The search yielded 53 articles, two of which reported changes in social contacts after COVID-19 control measures. The first study reported changes in contact patterns in Wuhan and Shanghai, and the second changes in contact patterns in the UK. We found no studies examining changes in contact patterns due to control measures in sub-Saharan Africa, and no studies disaggregating contacts by socioeconomic status. Added value of this studyThis is the first study to estimate the reproduction number of COVID-19 under control measures in sub-Saharan Africa using primary contact data. This study also moves beyond existing work to i) measure contacts in densely populated informal settlements, ii) explore how social contacts vary across socioeconomic status, and iii) assess the impact of control measures on economic and food security in these areas. Implications of all the evidenceCOVID-19 control measures have substantially reduced social contacts and disease transmission. People of lower socioeconomic status face greater transmission risk as they report more contacts. Control measures have led to considerable economic and food insecurity, and may not be sustainable in the long term without efforts to reduce the burden of control measures on households.

6.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20067504

RESUMEN

BackgroundTo contain the spread of COVID-19, a cordon sanitaire was put in place in Wuhan prior to the Lunar New Year, on 23 January 2020, restricting travel to other parts of China. We assess the efficacy of the cordon sanitaire to delay the introduction and onset of local transmission of COVID-19 in other major cities in mainland China. MethodsWe estimated the number of infected travellers from Wuhan to other major cities in mainland China from November 2019 to March 2020 using previously estimated COVID-19 prevalence in Wuhan and publicly available mobility data. We focused on Beijing, Chongqing, Hangzhou, and Shenzhen as four representative major cities to identify the potential independent contribution of the cordon sanitaire and holiday travel. To do this, we simulated outbreaks generated by infected arrivals in these destination cities using stochastic branching processes. We also modelled the effect of the cordon sanitaire in combination with reduced transmissibility scenarios representing the effect of local non-pharmaceutical interventions. FindingsIn the four cities, given the potentially high prevalence of COVID-19 in Wuhan between Dec 2019 and early Jan 2020, local transmission may have been seeded as early as 2 - 8 January 2020. By the time the cordon sanitaire was imposed, simulated case counts were likely in the hundreds. The cordon sanitaire alone did not substantially affect the epidemic progression in these cities, although it may have had some effect in smaller cities. InterpretationOur results indicate that the cordon sanitaire may not have prevented COVID-19 spread in major Chinese cities; local non-pharmaceutical interventions were likely more important for this. Research in ContextO_ST_ABSEvidence before this studyC_ST_ABSIn late 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was detected in Wuhan, China. In response to the outbreak, authorities enacted a cordon sanitaire in order to limit spread. Several studies have sought to determine the efficacy of the policy; a search of PubMed for "coronavirus AND (travel restrictions OR travel ban OR shutdown OR cordon sanitaire) AND (Wuhan OR China)" returned 24 results. However other studies have relied on reported cases to determine efficacy, which are likely subject to reporting and testing biases. Early outbreak dynamics are also subject to a significant degree of stochastic uncertainty due to small numbers of cases. Added value of this studyHere we use publicly-available mobility data and a stochastic branching process model to evaluate the efficacy of the cordon sanitaire to limiting the spread of COVID-19 from Wuhan to other cities in mainland China, while accounting for underreporting and uncertainty. We find that although travel restrictions led to a significant decrease in the number of individuals leaving Wuhan during the busy post-Lunar New Year holiday travel period, local transmission was likely already established in major cities. Thus, the travel restrictions likely did not affect the epidemic trajectory substantially in these cities. Implications of all the available evidenceA cordon sanitaire around the epicentre alone may not be able to reduce COVID-19 incidence when implemented after local transmission has occurred in highly connected neighbors. Local non-pharmaceutical interventions to reduce transmissibility (e.g., school and workplace closures) may have contributed more to the observed decrease in incidence in mainland China.

7.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20049023

RESUMEN

BackgroundTo mitigate and slow the spread of COVID-19, many countries have adopted unprecedented physical distancing policies, including the UK. We evaluate whether these measures might be sufficient to control the epidemic by estimating their impact on the reproduction number (R0, the average number of secondary cases generated per case). MethodsWe asked a representative sample of UK adults about their contact patterns on the previous day. The questionnaire documents the age and location of contacts and as well as a measure of their intimacy (whether physical contact was made or not). In addition, we asked about adherence to different physical distancing measures. The first surveys were sent on Tuesday 24th March, one day after a " lockdown" was implemented across the UK. We compared measured contact patterns during the " lockdown" to patterns of social contact made during a non-epidemic period. By comparing these, we estimated the change in reproduction number as a consequence of the physical distancing measures imposed. We used a meta-analysis of published estimates to inform our estimates of the reproduction number before interventions were put in place. FindingsWe found a 73% reduction in the average daily number of contacts observed per participant (from 10.2 to 2.9). This would be sufficient to reduce R0 from 2.6 prior to lockdown to 0.62 (95% confidence interval [CI] 0.37 - 0.89) after the lockdown, based on all types of contact and 0.37 (95% CI = 0.22 - 0.53) for physical contacts only. InterpretationThe physical distancing measures adopted by the UK public have substantially reduced contact levels and will likely lead to a substantial impact and a decline in cases in the coming weeks. However, this projected decline in incidence will not occur immediately as there are significant delays between infection, the onset of symptomatic disease and hospitalisation, as well as further delays to these events being reported. Tracking behavioural change can give a more rapid assessment of the impact of physical distancing measures than routine epidemiological surveillance. Research in contextO_ST_ABSEvidence before this studyC_ST_ABSMany governments have adopted physical distancing measures to mitigate the impact of the COVID-19 pandemic. However, it is unclear to what extent these measures reduce the number of contacts and therefore transmission. We searched PubMed and medRxiv on March 28, 2020, with the terms " (coronavirus OR COVID-19 OR influenza) AND ((school OR work) AND (closure OR holiday)) AND (contact OR mixing)" and identified 59 and 17 results, respectively. Only one study conducted in China during the COVID-19 pandemic reported a reduction in daily contacts outside the home during the period of " lockdown". We found no other published articles that empirically quantify the impact of these measures on age- and location-specific mixing patterns. Added value of this studyBy surveying adults behaviour in the UK during a period of stringent physical distancing (" lockdown") and comparing the results to previously collected data, we found a large reduction in daily contacts particularly outside the home, resulting in a marked reduction in the estimated reproduction number from 2.6 to 0.62 (95% bootstrapped confidence interval [CI] 0.37 - 0.89). This method allows for rapid assessment of changes in the reproduction number that is unaffected by reporting delays. Implications of all the available evidenceChanges in human contact behaviour drive respiratory infection rates. Understanding these changes at different stages of the COVID-19 pandemic allows us to rapidly quantify the impact of physical distancing measures on the transmission of pathogens.

8.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20043018

RESUMEN

The COVID-19 pandemic has shown a markedly low proportion of cases among children. Age disparities in observed cases could be explained by children having lower susceptibility to infection, lower propensity to show clinical symptoms, or both. We evaluate these possibilities by fitting an age-structured mathematical model to epidemic data from six countries. We estimate that clinical symptoms occur in 25% (95% CrI: 19-32%) of infections in 10-19-year-olds, rising to 76% (68-82%) in over-70s, and that susceptibility to infection in under-20s is approximately half that of older adults. Accordingly, we find that interventions aimed at children may have a relatively small impact on total cases, particularly if the transmissibility of subclinical infections is low. The age-specific clinical fraction and susceptibility we have estimated has implications for the expected global burden of COVID-19 because of demographic differences across settings: in younger populations, the expected clinical attack rate would be lower, although it is likely that comorbidities in low-income countries will affect disease severity. Without effective control measures, regions with older populations may see disproportionally more clinical cases, particularly in the later stages of the pandemic.

9.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20033050

RESUMEN

BACKGROUNDIn December 2019, a novel strain of SARS-CoV-2 emerged in Wuhan, China. Since then, the city of Wuhan has taken unprecedented measures and efforts in response to the outbreak. METHODSWe quantified the effects of control measures on population contact patterns in Wuhan, China, to assess their effects on the progression of the outbreak. We included the latest estimates of epidemic parameters from a transmission model fitted to data on local and internationally exported cases from Wuhan in the age-structured epidemic framework. Further, we looked at the age-distribution of cases. Lastly, we simulated lifting of the control measures by allowing people to return to work in a phased-in way, and looked at the effects of returning to work at different stages of the underlying outbreak. FINDINGSChanges in mixing patterns may have contributed to reducing the number of infections in mid-2020 by 92% (interquartile range: 66-97%). There are benefits to sustaining these measures until April in terms of reducing the height of the peak, overall epidemic size in mid-2020 and probability that a second peak may occur after return to work. However, the modelled effects of social distancing measures vary by the duration of infectiousness and the role school children play in the epidemic. INTERPRETATIONRestrictions on activities in Wuhan, if maintained until April, would likely contribute to the reduction and delay the epidemic size and peak, respectively. However, there are some limitations to the analysis, including large uncertainties around estimates of R0 and the duration of infectiousness. FUNDINGBill and Melinda Gates Foundation, National Institute for Health Research, Wellcome Trust, and Health Data Research UK.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...