Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Idioma
Intervalo de año de publicación
2.
Ross Fiziol Zh Im I M Sechenova ; 99(3): 392-405, 2013 Mar.
Artículo en Ruso | MEDLINE | ID: mdl-23789442

RESUMEN

We have found that the brainstem-spinal cord circuitry of decerebrated cats actively maintain the equilibrium during standing, walking and imposed mechanical perturbations similar to that observed in intact animals. The corrective hindlimb motor responses during standing included redistribution of the extensor activity ipsilateral and contralateral to perturbation. The postural corrections in walking cats were due to considerable modification of EMG pattern in the limbs as well as changing of the swing-stance phases of the step cycle and ground reaction forces depending of perturbation side. Thus the basic mechanisms for balance control of decerebrated animals in these two forms of motor behavior are different. Balance-related adjustments relied entirely on the integration of somatosensory information arising from the moving hindquarters because of the suppression of vestibular, visual, and head-neck-trunk sensory input. We propose that the somatosensory input from the hindquarters in concert with the lumbosacral spinal circuitry can control the dynamics of the hindquarters sufficient to sustain balance. We found that, after isolation from the brainstem or forebrain, lumbosacral circuits receiving tonic epidural electrical stimulation can effectively control equilibrium during standing and stepping. Detailed analyses of the relationships among muscle activity, trunk kinematics, and limb kinetics indicate that spinal motor systems utilize a combination of feedback and feedforward strategies to maintain dynamic equilibrium during walking. The unexpected ability of spinal circuitries to exert efficient postural control in the presence of epidural electrical stimulation in decerebrated and spinal cats have significant implications for the potential of humans with a severe spinal cord injury to regain a significant level of functional standing and walking capacities.


Asunto(s)
Estado de Descerebración/fisiopatología , Marcha/fisiología , Locomoción , Neuronas/fisiología , Postura/fisiología , Médula Espinal/fisiología , Animales , Gatos , Corteza Cerebral/fisiología , Corteza Cerebral/cirugía , Estimulación Eléctrica , Electromiografía , Miembro Posterior/fisiología , Miembro Posterior/fisiopatología , Microelectrodos , Músculo Esquelético/fisiología , Procedimientos Neuroquirúrgicos , Técnicas Estereotáxicas
3.
Ross Fiziol Zh Im I M Sechenova ; 99(8): 917-27, 2013 Aug.
Artículo en Ruso | MEDLINE | ID: mdl-25470942

RESUMEN

It is known that spinal neuronal networks activated by epidural electrical stimulation (EES) can produce the stepping EMG pattern and control the locomotor behavior. At present study we showed that non-invasive transcutaneous electrical spinal cord stimulation (tESCS) applied to the lumbar-sacral enlargement can facilitate the locomotor activity in decerebrated and spinal animals. The comparison of the motor responses evoked by EES vs tESCS showed that both methods produce the locomotor patterns with close properties and similar reflex mechanisms. The data obtained suggest that tESCS is an efficient approach for investigation of the locomotor control in acute and chronic experiments as well as facilitates of the locomotor abilities after spinal cord injury. Taking to account the non-invasivity and easement of tESCS, this approach could be further implemented in clinical practice for rehabilitation of the patient with spinal cord injury.


Asunto(s)
Estimulación Eléctrica , Actividad Motora/fisiología , Traumatismos de la Médula Espinal/terapia , Nervios Espinales/fisiopatología , Animales , Gatos , Estado de Descerebración/fisiopatología , Estado de Descerebración/terapia , Electromiografía , Médula Espinal/fisiopatología , Médula Espinal/efectos de la radiación , Traumatismos de la Médula Espinal/fisiopatología , Estimulación de la Médula Espinal , Nervios Espinales/efectos de la radiación
4.
Fiziol Cheloveka ; 38(2): 46-56, 2012.
Artículo en Ruso | MEDLINE | ID: mdl-22679796

RESUMEN

A new tool for locomotor circuitry activation in the non-injured human by transcutaneous electrical spinal cord stimulation (tSCS) has been described. We show that continuous tSCS over T11-T12 vertebrae at 5-40 Hz induced involuntary locomotor-like stepping movements in subjects with their legs in a gravity-independent position. The increase of frequency of tSCS from 5 to 30 Hz augmented the amplitude of evoked stepping movements. The duration of cycle period did not depend on frequency of tSCS. During tSCS the hip, knee and ankle joints were involved in the stepping performance. It has been suggested that tSCS activates the locomotor circuitry through the dorsal roots. It appears that tSCS can be used as a non-invasive method in rehabilitation of spinal pathology.


Asunto(s)
Locomoción/fisiología , Médula Espinal/fisiología , Raíces Nerviosas Espinales/fisiología , Estimulación Eléctrica Transcutánea del Nervio , Humanos , Articulación de la Rodilla/fisiología , Pierna/inervación , Pierna/fisiología , Masculino , Músculo Esquelético/inervación , Músculo Esquelético/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...