Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biomimetics (Basel) ; 9(4)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38667241

RESUMEN

Osteoporosis is a skeletal disorder marked by compromised bone integrity, predisposing individuals, particularly older adults and postmenopausal women, to fractures. The advent of bioceramics for bone regeneration has opened up auspicious pathways for addressing osteoporosis. Research indicates that bioceramics can help bones grow back by activating bone morphogenetic protein (BMP), mitogen-activated protein kinase (MAPK), and wingless/integrated (Wnt)/ß-catenin pathways in the body when combined with stem cells, drugs, and other supports. Still, bioceramics have some problems, such as not being flexible enough and prone to breaking, as well as difficulties in growing stem cells and discovering suitable supports for different bone types. While there have been improvements in making bioceramics better for healing bones, it is important to keep looking for new ideas from different areas of medicine to make them even better. By conducting a thorough scrutiny of the pivotal role bioceramics play in facilitating bone regeneration, this review aspires to propel forward the rapidly burgeoning domain of scientific exploration. In the end, this appreciation will contribute to the development of novel bioceramics that enhance bone regrowth and offer patients with bone disorders alternative treatments.

2.
Int J Biol Sci ; 20(5): 1688-1704, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38481807

RESUMEN

Background: Melanocortin 1 receptor (MC1R), a receptor of α-melanocyte-stimulating hormone (α-MSH), is exclusively present in melanocytes where α-MSH/MC1R stimulate melanin pigmentation through microphthalmia-associated transcription factor M (MITF-M). Toll-like receptor 4 (TLR4), a receptor of endotoxin lipopolysaccharide (LPS), is distributed in immune and other cell types including melanocytes where LPS/TLR4 activate transcriptional activity of nuclear factor (NF)-κB to express cytokines in innate immunity. LPS/TLR4 also up-regulate MITF-M-target melanogenic genes in melanocytes. Here, we propose a molecular target of antimelanogenic activity through elucidating inhibitory mechanism on α-MSH-induced melanogenic programs by benzimidazole-2-butanol (BI2B), an inhibitor of LPS/TLR4-activated transcriptional activity of NF-κB. Methods: Ultraviolet B (UV-B)-irradiated skins of HRM-2 hairless mice and α-MSH-activated melanocyte cultures were employed to examine melanogenic programs. Results: Topical treatment with BI2B ameliorated UV-B-irradiated skin hyperpigmentation in mice. BI2B suppressed the protein or mRNA levels of melanogenic markers, such as tyrosinase (TYR), MITF-M and proopiomelanocortin (POMC), in UV-B-exposed and pigmented skin tissues. Moreover, BI2B inhibited melanin pigmentation in UV-B-irradiated co-cultures of keratinocyte and melanocyte cells and that in α-MSH-activated melanocyte cultures. Mechanistically, BI2B inhibited the activation of cAMP response element-binding protein (CREB) in α-MSH-induced melanogenic programs and suppressed the expression of MITF-M at the promoter level. As a molecular target, BI2B primarily inhibited mitogen-activated protein kinase (MAPK) kinase 3 (MKK3)-catalyzed kinase activity on p38MAPK. Subsequently, BI2B interrupted downstream pathway of p38MAPK-mitogen and stress-activated protein kinase-1 (MSK1)-CREB-MITF-M, and suppressed MITF-M-target melanogenic genes, encoding enzymes TYR, TYR-related protein-1 (TRP-1) and dopachrome tautomerase (DCT) in melanin biosynthesis, and encoding proteins PMEL17 and Rab27A in the transfer of pigmented melanosomes to the overlaying keratinocytes in the skin. Conclusion: Targeting the MKK3-p38MAPK-MSK1-CREB-MITF-M pathway was suggested as a rationale to inhibit UV-B- or α-MSH-induced facultative melanogenesis and as a strategy to prevent acquired pigmentary disorders in the skin.


Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico , Hiperpigmentación , Animales , Ratones , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Melaninas/metabolismo , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , alfa-MSH/farmacología , alfa-MSH/metabolismo , Factor de Transcripción Asociado a Microftalmía/genética , Factor de Transcripción Asociado a Microftalmía/metabolismo , Lipopolisacáridos/toxicidad , Melanocitos/metabolismo , Hiperpigmentación/tratamiento farmacológico , Hiperpigmentación/metabolismo , Monofenol Monooxigenasa/metabolismo , Línea Celular Tumoral
3.
Int J Mol Sci ; 25(4)2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38397026

RESUMEN

The purpose of this study was to investigate the initiation of autophagy activation and apoptosis in nucleus pulposus cells under temporary compression (TC) and sustained compression (SC) to identify ideal research approaches in intervertebral disc degeneration. Various techniques were used: radiography (X-ray), magnetic resonance imaging (MRI), transmission electron microscope (TEM), H&E staining, Masson's trichrome staining, immunohistochemistry (IHC) (LC3, beclin-1, and cleaved caspase-3), and real-time polymerase chain reaction (RT-qPCR) for autophagy-related (beclin-1, LC3, and P62) and apoptosis-related (caspase-3 and PARP) gene expression analysis. X-ray and MRI revealed varying degrees of disc degeneration, ranging from moderate to severe in both groups. The severity was directly linked to compression duration, with SC resulting in notably severe central NP cell degeneration. Surprisingly, TC also caused similar, though less severe, degeneration. Elevated expression of LC3 and beclin-1 was identified after 6 weeks, but it notably declined after 12 weeks. Central NP cells in both groups exhibited increased expression of cleaved caspase-3 that was positively correlated with the duration of SC. TC showed fewer apoptotic markers compared to SC. LC3, beclin-1, and P62 mRNA expression peaked after 6 weeks and declined after 12 weeks in both groups. Cleaved caspase-3 and PARP expression peaked in SC, positively correlating with longer compression duration, while TC showed lower levels of apoptosis gene expression. Furthermore, TEM results revealed different events of the autophagic degradation process after 2 weeks of compression. TCmay be ideal for studying early triggered autophagy-mediated degeneration, while SC may be ideal for studying late or slower-triggered apoptosis-mediated degeneration.


Asunto(s)
Degeneración del Disco Intervertebral , Humanos , Degeneración del Disco Intervertebral/metabolismo , Caspasa 3/genética , Beclina-1/genética , Beclina-1/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Apoptosis , Autofagia
4.
ACS Macro Lett ; 12(7): 986-992, 2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37399507

RESUMEN

Herein, we report the directional stimuli-responsive self-assembly of gold nanoparticles (AuNPs) coated with a thermoresponsive block copolymer (BCP), poly(ethylene glycol)-b-poly(N-isopropylacrylamide) (PEG-b-PNIPAM) and charged small molecules. AuNPs modified with PEG-b-PNIPAM possessing a AuNP/PNIPAM/PEG core/active/shell structure undergo temperature-induced self-assembly into one-dimensional (1D) or two-dimensional (2D) structures in salt solutions, with the morphology varying with the ionic strength of the medium. Salt-free self-assembly is also realized by modulating the surface charge by the codeposition of positively charged small molecules; 1D or 2D assemblies are formed depending on the ratio between the small molecule and PEG-b-PNIPAM, consistent with the trend observed with the bulk salt concentration. A series of charge-controlled self-assembly at various conditions revealed that the temperature-induced BCP-mediated self-assembly reported here provides an effective means for on-demand directional self-assembly of nanoparticles (NPs) with controlled morphology, interparticle distance, and optical properties, and the fixation of high-temperature structures.

5.
Nanoscale ; 14(45): 17053-17064, 2022 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-36367284

RESUMEN

Despite advances in diagnostic and therapeutic methods, the prognosis of patients with hepatocellular carcinoma (HCC) remains poor due to the delay in diagnosis. Herein, we aimed to discover a highly sensitive and specific biomarker for HCC based on genomic big data analysis and create an HCC-targeted imaging probe using carbon nanodots (CNDs) as contrast agents. In genomic analysis, we selected glucose transporter 2 (GLUT2) as a potential imaging target for HCC. We confirmed the target suitability by immunohisto-chemistry tests of 339 patient samples, where 81.1% of the patients exhibited underexpression of GLUT2, i.e., higher GLUT2 intensity in non-tumor tissues than in tumor tissues. To visualize GLUT2, we conjugated CNDs with glucosamine (GLN) as a targeting ligand to yield glucosamine-labeled CNDs (GLN-CNDs). A series of in vitro and in vivo experiments were conducted on GLUT2-modified HepG2 cells to confirm the specificity of the GLN-CNDs. Since the GLUT2 expression is higher in hepatocytes than in HCC cells, the GLUT2-targeted contrast agent is highly attached to normal cells. However, it is possible to produce images in the same form as the images obtained with a cancer cell-targeted contrast agent by inverting color scaling. Our results indicate that GLUT2 is a promising target for HCC and that GLN-CNDs may potentially be used as targeted imaging probes for diagnosing HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carbono , Carcinoma Hepatocelular/diagnóstico por imagen , Medios de Contraste , Neoplasias Hepáticas/diagnóstico por imagen , Glucosamina
6.
Acc Chem Res ; 55(16): 2224-2234, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35921179

RESUMEN

Conjugated polymers have been actively studied as an alternative to inorganic semiconductors for their unique optical and electrical properties and low-cost solution processability. However, typical conjugated polymer films contain numerous defects that negatively affect their transport properties, which remains a major issue despite much effort to develop ways to improve the molecular packing structure. In principle, conjugated block copolymers (BCPs) composed of a rod-type conjugated polymer and a coil-type insulating polymer can assemble into various types of ordered nanostructures based on the microphase segregation of two polymer blocks. However, such assembly typically requires a relatively large volume fraction of the coil block or modification of the rod block, both of which tend to impede charge transport. As an alternative, we and others have fabricated nanoscale assemblies of conjugated BCPs via solution-phase self-assembly, which can be used as building blocks for construction of extended nanoarrays of conjugated polymers. In particular, BCPs containing poly(3-hexylthiophene) (P3HT), a conjugated polymer widely used for its high hole mobility, form highly ordered and technologically relevant one-dimensional (1D) nanowires with controlled lengths. A range of well-defined assembly structures such as square plates, ribbons, vesicles, and helices have been prepared from various conjugated BCPs, resembling those of peptide self-assembly, forming diverse nanostructures through combinations of π-π stacking, hydrogen bonding, and hydrophobic interactions.When the self-assembly of P3HT BCPs takes place at an air-water interface, the initially formed polymer nanowires further assemble into hierarchical two-dimensional (2D) nanoarrays with solvent evaporation. The fluidic nature of the water subphase allows fabrication of highly ordered assembly structures from P3HT BCPs with high P3HT content. The ultrathin free-standing film integrated in a field effect transistor (FET) showed orders of magnitude higher current and hole mobility compared to that fabricated by conventional spin-coating. Furthermore, binary self-assembly of a P3HT BCP and quantum dots (QDs) at the air-water interface generates well-ordered 2D films of alternating P3HT nanowires and 1D QD arrays. Unlike coil-coil BCP systems, QDs reside at the interface between P3HT and coil blocks for a broad range of QD sizes due to the strong P3HT packing interactions and the flexible water subphase, forming tight p-n junctions for enhanced photocurrent. Incorporation of magnetic nanoparticles can further improve the degree of order, enabling fabrication of long-range order and direction-controlled P3HT nanoarrays through magnetic-field induced self-assembly.The conjugated BCP approach is highly modular and can be combined with various types of functional molecules, polymers, and nanoparticles, offering a powerful platform for fabrication of functional polymer nanostructures with desired morphologies and properties. This Account introduces recent advances in the self-assembly of π-conjugated BCPs, describes how they differ from prototypical coil-coil type BCPs, and discusses current issues and future outlooks.


Asunto(s)
Nanoestructuras , Enlace de Hidrógeno , Nanoestructuras/química , Polímeros/química , Solventes , Agua
7.
Cancer Cell Int ; 22(1): 185, 2022 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-35550582

RESUMEN

BACKGROUND: Papillary thyroid carcinoma (PTC), the most common endocrine cancer, accounts for 80-85% of all malignant thyroid tumors. This study focused on identifying targets that affect the multifocality of PTC. In a previous study, we determined 158 mRNAs related to multifocality in BRAF-mutated PTC using The Cancer Genome Atlas. METHODS: We used multi-omics data (miRNAs and mRNAs) to identify the regulatory mechanisms of the investigated mRNAs. miRNA inhibitors were used to determine the relationship between mRNAs and miRNAs. We analyzed the target protein levels in patient sera using ELISA and immunohistochemical staining of patients' tissues. RESULTS: We identified 44 miRNAs that showed a negative correlation with mRNA expression. Using in vitro experiments, we identified four miRNAs that inhibit TEK and/or AXIN2 among the target mRNAs. We also showed that the downregulation of TEK and AXIN2 decreased the proliferation and migration of BRAF ( +) PTC cells. To evaluate the diagnostic ability of multifocal PTC, we examined serum TEK or AXIN2 in unifocal and multifocal PTC patients using ELISA, and showed that the serum TEK in multifocal PTC patients was higher than that in the unifocal PTC patients. The immunohistochemical study showed higher TEK and AXIN2 expression in multifocal PTC than unifocal PTC. CONCLUSIONS: Both TEK and AXIN2 play a potential role in the multifocality of PTC, and serum TEK may be a diagnostic marker for multifocal PTC.

8.
Artículo en Inglés | MEDLINE | ID: mdl-35129321

RESUMEN

Colloidal nanoparticles are synthesized in a complex reaction mixture that has an inhomogeneous chemical environment induced by local phase separation of the medium. Nanoparticle syntheses based on micelles, emulsions, flow of different fluids, injection of ionic precursors in organic solvents, and mixing the metal organic phase of precursors with an aqueous phase of reducing agents are well established. However, the formation mechanism of nanoparticles in the phase-separated medium is not well understood because of the complexity originating from the presence of phase boundaries as well as nonuniform chemical species, concentrations, and viscosity in different phases. Herein, we investigate the formation mechanism and diffusion of silver nanoparticles in a phase-separated medium by using liquid phase transmission electron microscopy and many-body dissipative particle dynamics simulations. A quantitative analysis of the individual growth trajectories reveals that a large portion of silver nanoparticles nucleate and grow rapidly at the phase boundaries, where metal ion precursors and reducing agents from the two separated phases react to form monomers. The results suggest that the motion of the silver nanoparticles at the interfaces is highly affected by the interaction with polymers and exhibits superdiffusive dynamics because of the polymer relaxation.

9.
Front Genet ; 12: 743786, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34646310

RESUMEN

Glioma is the most common primary malignant tumor that occurs in the central nervous system. Gliomas are subdivided according to a combination of microscopic morphological, molecular, and genetic factors. Glioblastoma (GBM) is the most aggressive malignant tumor; however, efficient therapies or specific target molecules for GBM have not been developed. We accessed RNA-seq and clinical data from The Cancer Genome Atlas, the Chinese Glioma Genome Atlas, and the GSE16011 dataset, and identified differentially expressed genes (DEGs) that were common to both GBM and lower-grade glioma (LGG) in three independent cohorts. The biological functions of common DEGs were examined using NetworkAnalyst. To evaluate the prognostic performance of common DEGs, we performed Kaplan-Meier and Cox regression analyses. We investigated the function of SOCS3 in the central nervous system using three GBM cell lines as well as zebrafish embryos. There were 168 upregulated genes and 50 downregulated genes that were commom to both GBM and LGG. Through survival analyses, we found that SOCS3 was the only prognostic gene in all cohorts. Inhibition of SOCS3 using siRNA decreased the proliferation of GBM cell lines. We also found that the zebrafish ortholog, socs3b, was associated with brain development through the regulation of cell proliferation in neuronal tissue. While additional mechanistic studies are necessary, our results suggest that SOCS3 is an important biomarker for glioma and that SOCS3 is related to the proliferation of neuronal tissue.

10.
Nanoscale ; 13(32): 13758-13763, 2021 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-34477650

RESUMEN

Here, we report how the nature of the hydrophobic core affects the molecular interactions of DNA block copolymer assemblies. Three different amphiphilic DNA block copolymers, DNA-b-polystyrene (DNA-b-PS), DNA-b-poly(2-vinylpyridine) (DNA-b-P2VP), and DNA-b-poly(methyl acrylate) (DNA-b-PMA) were synthesized and assembled into spherical micelles composed of a hydrophobic polymer core and DNA corona. Interestingly, DNA block copolymer micelles having different hydrophobic cores exhibited markedly different molecular and biological interactions. DNA-b-PS exhibited higher melting temperature, sharper melting transition, higher stability to nuclease-catalyzed DNA degradation, and higher cellular uptake efficiency compared to DNA-b-P2VP and DNA-b-PMA. The investigation of the self-assembly behavior revealed a much higher aggregation number and DNA density for DNA-b-PS micelles, which explains the superior properties of DNA-b-PS. These results demonstrate that the type of the hydrophobic core polymer, which has been largely overlooked, has a profound impact on the molecular and biological interactions of the DNA shell.


Asunto(s)
Micelas , Polímeros , ADN , Interacciones Hidrofóbicas e Hidrofílicas , Poliestirenos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA