Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Diagnostics (Basel) ; 14(15)2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39125465

RESUMEN

Noise in computed tomography (CT) is inevitably generated, which lowers the accuracy of disease diagnosis. The non-local means approach, a software technique for reducing noise, is widely used in medical imaging. In this study, we propose a noise reduction algorithm based on fast non-local means (FNLMs) and apply it to CT images of a phantom created using 3D printing technology. The self-produced phantom was manufactured using filaments with similar density to human brain tissues. To quantitatively evaluate image quality, the contrast-to-noise ratio (CNR), coefficient of variation (COV), and normalized noise power spectrum (NNPS) were calculated. The results demonstrate that the optimized smoothing factors of FNLMs are 0.08, 0.16, 0.22, 0.25, and 0.32 at 0.001, 0.005, 0.01, 0.05, and 0.1 of noise intensities, respectively. In addition, we compared the optimized FNLMs with noisy, local filters and total variation algorithms. As a result, FNLMs showed superior performance compared to various denoising techniques. Particularly, comparing the optimized FNLMs to the noisy images, the CNR improved by 6.53 to 16.34 times, COV improved by 6.55 to 18.28 times, and the NNPS improved by 10-2 mm2 on average. In conclusion, our approach shows significant potential in enhancing CT image quality with anthropomorphic phantoms, thus addressing the noise issue and improving diagnostic accuracy.

2.
J Photochem Photobiol B ; 257: 112949, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38865816

RESUMEN

Large scale outbreaks of infectious respiratory disease have repeatedly plagued the globe over the last 100 years. The scope and strength of the outbreaks are getting worse as pathogenic RNA viruses are rapidly evolving and highly evasive to vaccines and anti-viral drugs. Germicidal UV-C is considered as a robust agent to disinfect RNA viruses regardless of their evolution. While genomic damage by UV-C has been known to be associated with viral inactivation, the precise relationship between the damage and inactivation remains unsettled as genomic damage has been analyzed in small areas, typically under 0.5 kb. In this study, we assessed genomic damage by the reduced efficiency of reverse transcription of regions of up to 7.2 kb. Our data seem to indicate that genomic damage was directly proportional to the size of the genome, and a single hit of damage was sufficient for inactivation of RNA viruses. The high efficacy of UV-C is already effectively adopted to inactivate airborne RNA viruses.


Asunto(s)
Virus ARN , Rayos Ultravioleta , Inactivación de Virus , Virus ARN/efectos de la radiación , Virus ARN/genética , Virus ARN/fisiología , Inactivación de Virus/efectos de la radiación , Genoma Viral , Humanos , Transcripción Reversa , ARN Viral/genética
3.
Appl Radiat Isot ; 210: 111374, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38805985

RESUMEN

Computed tomography (CT), known for its exceptionally high accuracy, is associated with a substantial dose of ionizing radiation. Low-dose protocols have been devised to address this issue; however, a reduction in the radiation dose can lead to a deficiency in the number of photons, resulting in quantum noise. Thus, the aim of this study was to optimize the smoothing parameter (σ-value) of the block matching and 3D filtering (BM3D) algorithm to effectively reduce noise in low-dose chest and abdominal CT images. Acquired images were subsequently analyze using quantitative evaluation metrics, including contrast to noise ratio (CNR), coefficient of variation (CV), and naturalness image quality evaluator (NIQE). Quantitative evaluation results demonstrated that the optimal σ-value for CNR, CV, and NIQE were 0.10, 0.11, and 0.09 in low-dose chest CT images respectively, whereas those in abdominal images were 0.12, 0.11, and 0.09, respectively. The average of the optimal σ-values, which produced the most improved results, was 0.10, considering both visual and quantitative evaluations. In conclusion, we demonstrated that the optimized BM3D algorithm with σ-value is effective for noise reduction in low-dose chest and abdominal CT images indicating its feasibility of in the clinical field.


Asunto(s)
Algoritmos , Dosis de Radiación , Radiografía Abdominal , Radiografía Torácica , Tomografía Computarizada por Rayos X , Humanos , Tomografía Computarizada por Rayos X/métodos , Radiografía Abdominal/métodos , Radiografía Torácica/métodos , Imagenología Tridimensional/métodos , Relación Señal-Ruido , Fantasmas de Imagen
4.
Biomater Res ; 28: 0002, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38327616

RESUMEN

Background: Near-infrared (NIR) phototheranostics provide promising noninvasive imaging and treatment for head and neck squamous cell carcinoma (HNSCC), capitalizing on its adjacency to skin or mucosal surfaces. Activated by laser irradiation, targeted NIR fluorophores can selectively eradicate cancer cells, harnessing the power of synergistic photodynamic therapy and photothermal therapy. However, there is a paucity of NIR bioprobes showing tumor-specific targeting and effective phototheranosis without hurting surrounding healthy tissues. Methods: We engineered a tumor-specific bifunctional NIR bioprobe designed to precisely target HNSCC and induce phototheranosis using bioconjugation of a cyclic arginine-glycine-aspartic acid (cRGD) motif and zwitterionic polymethine NIR fluorophore. The cytotoxic effects of cRGD-ZW800-PEG were measured by assessing heat and reactive oxygen species (ROS) generation upon an 808-nm laser irradiation. We then determined the in vivo efficacy of cRGD-ZW800-PEG in the FaDu xenograft mouse model of HNSCC, as well as its biodistribution and clearance, using a customized portable NIR imaging system. Results: Real-time NIR imaging revealed that intravenously administered cRGD-ZW800-PEG targeted tumors rapidly within 4 h postintravenous injection in tumor-bearing mice. Upon laser irradiation, cRGD-ZW800-PEG produced ROS and heat simultaneously and exhibited synergistic photothermal and photodynamic effects on the tumoral tissue without affecting the neighboring healthy tissues. Importantly, all unbound bioprobes were cleared through renal excretion. Conclusions: By harnessing phototheranosis in combination with tailored tumor selectivity, our targeted bioprobe ushers in a promising paradigm in cancer treatment. It promises safer and more efficacious therapeutic avenues against cancer, marking a substantial advancement in the field.

5.
Soud Lek ; 68(3): 30-32, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37805271

RESUMEN

The authors review the literature on the determination of post-mortem serum tryptase values and present the case of a young man who was hit by a train. However, his family believes he has no motivation to commit suicide. Collision with a train is one of the most common methods of suicide, especially among young men under 40 years of age. (1). The forensic autopsy showed that the man died due to the collision with the train, with traumatic hemorrhagic shock stated as a cause of death. Following toxicological, biochemical, and immunological tests created a supposition that the incident was not a result of suicidal action but a consequence of a possible allergic or anaphylactic reaction of the organism combined with a state of mild alcohol intoxication.


Asunto(s)
Anafilaxia , Suicidio , Masculino , Humanos , Anafilaxia/etiología , Triptasas , Autopsia
6.
J Korean Med Sci ; 38(36): e297, 2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37698211

RESUMEN

BACKGROUND: With advance of next-generation sequencing (NGS) techniques, the need for mitochondrial DNA analysis is increasing not only in the forensic area, but also in medical fields. METHODS: Two commercial programs, Converge Software (CS) and Torrent Variant Caller for variant calling of NGS data, were compared with a considerable amount of sequence data of 50 samples with a homogeneous ethnicity. RESULTS: About 2,300 variants were identified and the two programs showed about 90% of consistency. CS, a dedicated analysis program for mitochondrial DNA, showed some advantages for forensic use. By additional visual inspection, several causes of discrepancy in variant calling results were identified. Application of different notation rules for mitochondrial sequence and the minor allele frequency close to detection threshold were the two most significant reasons. CONCLUSION: With prospective improvement of each program, researchers and practitioners should be aware of characteristics of the analysis program they use and prepare their own strategies to determine variants.


Asunto(s)
Genoma Mitocondrial , Humanos , Estudios Prospectivos , Secuenciación de Nucleótidos de Alto Rendimiento , Concienciación , ADN Mitocondrial/genética
7.
J Biol Chem ; 299(9): 105081, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37495105

RESUMEN

RecQ helicases are highly conserved between bacteria and humans. These helicases unwind various DNA structures in the 3' to 5'. Defective helicase activity elevates genomic instability and is associated with predisposition to cancer and/or premature aging. Recent single-molecule analyses have revealed the repetitive unwinding behavior of RecQ helicases from Escherichia coli to humans. However, the detailed mechanisms underlying this behavior are unclear. Here, we performed single-molecule studies of WRN-1 Caenorhabditis elegans RecQ helicase on various DNA constructs and characterized WRN-1 unwinding dynamics. We showed that WRN-1 persistently repeated cycles of DNA unwinding and rewinding with an unwinding limit of 25 to 31 bp per cycle. Furthermore, by monitoring the ends of the displaced strand during DNA unwinding we demonstrated that WRN-1 reels in the ssDNA overhang in an ATP-dependent manner. While WRN-1 reeling activity was inhibited by a C. elegans homolog of human replication protein A, we found that C. elegans replication protein A actually switched the reiterative unwinding activity of WRN-1 to unidirectional unwinding. These results reveal that reeling-in ssDNA is an intermediate step in the reiterative unwinding process for WRN-1 (i.e., the process proceeds via unwinding-reeling-rewinding). We propose that the reiterative unwinding activity of WRN-1 may prevent extensive unwinding, allow time for partner proteins to assemble on the active region, and permit additional modulation in vivo.

8.
Nucleic Acids Res ; 51(5): 2257-2269, 2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-36805268

RESUMEN

DNA polymerase θ (POLQ) is a unique DNA polymerase that is able to perform microhomology-mediated end-joining as well as translesion synthesis (TLS) across an abasic (AP) site and thymine glycol (Tg). However, the biological significance of the TLS activity is currently unknown. Herein we provide evidence that the TLS activity of POLQ plays a critical role in repairing complex DNA double-strand breaks (DSBs) induced by high linear energy transfer (LET) radiation. Radiotherapy with high LET radiation such as carbon ions leads to more deleterious biological effects than corresponding doses of low LET radiation such as X-rays. High LET-induced DSBs are considered to be complex, carrying additional DNA damage such as AP site and Tg in close proximity to the DSB sites. However, it is not clearly understood how complex DSBs are processed in mammalian cells. We demonstrated that genetic disruption of POLQ results in an increase of chromatid breaks and enhanced cellular sensitivity following treatment with high LET radiation. At the biochemical level, POLQ was able to bypass an AP site and Tg during end-joining and was able to anneal two single-stranded DNA tails when DNA lesions were located outside the microhomology. This study offers evidence that POLQ is directly involved in the repair of complex DSBs.


Asunto(s)
Roturas del ADN de Doble Cadena , ADN Polimerasa Dirigida por ADN , Animales , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Reparación del ADN , ADN/genética , Reparación del ADN por Unión de Extremidades , Mamíferos/genética , ADN Polimerasa theta
9.
Arch Pathol Lab Med ; 147(11): 1268-1277, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36602894

RESUMEN

CONTEXT.­: Mitochondria and mitochondrial DNA have been suggested to play a role in cancer initiation and progression. Knowledge of mitochondrial DNA could provide a breakthrough to advance cancer management. OBJECTIVE.­: To identify the mitochondrial DNA landscape in non-small cell lung carcinoma. DESIGN.­: The adenocarcinoma set consisted of 365 pairs of adenocarcinomas and normal lung tissues, whereas the metastasis set included 12 primary non-small cell carcinomas, 15 metastatic tumors, and their normal counterparts. Tumor-specific somatic variants were identified, and if a variant showed heteroplasmy, the proportion of minor alleles was evaluated. Variants with greater than 10% change in allele frequency between tumor and normal pairs were identified as "heteroplasmic shifts." RESULTS.­: Tumor-specific variants appeared throughout the whole mitochondrial genome, without a common hot spot. Distinct variant profiles were seen in 289 (79.18%) of all individual adenocarcinomas. The presence of a unique profile and the number and loading of heteroplasmic shifts in tumors increased with higher stage or lymph node metastasis, and were related to shorter survival. In the metastasis set, the primary tumor variants were generally found in metastatic tumors. CONCLUSIONS.­: This study shows that somatic mitochondrial DNA mutations present with diverse locations and unique profiles in each individual tumor, implying their clinicopathologic utility.

10.
Int J Mol Sci ; 25(1)2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38203730

RESUMEN

Small molecule fluorophores often face challenges such as short blood half-life, limited physicochemical and optical stability, and poor pharmacokinetics. To overcome these limitations, we conjugated the zwitterionic near-infrared fluorophore ZW800-PEG to human serum albumin (HSA), creating HSA-ZW800-PEG. This conjugation notably improves chemical, physical, and optical stability under physiological conditions, addressing issues commonly encountered with small molecules in biological applications. Additionally, the high molecular weight and extinction coefficient of HSA-ZW800-PEG enhances biodistribution and tumor targeting through the enhanced permeability and retention effect. The unique distribution and elimination dynamics, along with the significantly extended blood half-life of HSA-ZW800-PEG, contribute to improved tumor targetability in both subcutaneous and orthotopic xenograft tumor-bearing animal models. This modification not only influences the pharmacokinetic profile, affecting retention time and clearance patterns, but also enhances bioavailability for targeting tissues. Our study guides further development and optimization of targeted imaging agents and drug-delivery systems.


Asunto(s)
Neoplasias , Albúmina Sérica Humana , Animales , Humanos , Distribución Tisular , Neoplasias/diagnóstico por imagen , Disponibilidad Biológica , Sistemas de Liberación de Medicamentos , Colorantes Fluorescentes , Ionóforos
11.
Small Methods ; 6(3): e2101239, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35112812

RESUMEN

The current diagnosis of bacteremia mainly relies on blood culture, which is inadequate for the rapid and quantitative determination of most bacteria in blood. Here, a quantitative, multiplex, microfluidic fluorescence in situ hybridization method (µFISH) is developed, which enables early and rapid (3-h) diagnosis of bacteremia without the need for prior blood culture. This novel technology employs mannose-binding lectin-coated magnetic nanoparticles, which effectively opsonize a broad range of pathogens, magnetically sequestering them in a microfluidic device. Therein, µFISH probes, based on unique 16S rRNA sequences, enable the identification and quantification of sequestered pathogens both in saline and whole blood, which is more sensitive than conventional polymerase chain reaction. Using µFISH, Escherichia coli (E. coli) is detected in whole blood collected from a porcine disease model and from E. coli-infected patients. Moreover, the proportion of E. coli, relative to other bacterial levels in the blood, is accurately and rapidly determined, which is not possible using conventional diagnostic methods. Blood from E. coli-infected patients is differentiated from healthy donors' blood using cutoff values with a 0.05 significance level. Thus, µFISH is a versatile method that can be used to rapidly identify pathogens and determine their levels relative to other culturable and nonculturable bacteria in biological samples.


Asunto(s)
Bacteriemia , Infecciones por Escherichia coli , Animales , Bacteriemia/diagnóstico , Bacterias , Escherichia coli/genética , Infecciones por Escherichia coli/diagnóstico , Humanos , Hibridación Fluorescente in Situ/métodos , ARN Ribosómico 16S/genética , Porcinos
12.
Front Cell Infect Microbiol ; 11: 676650, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34527598

RESUMEN

Recent studies have suggested the existence of a blood microbiome in the healthy host. However, changes in the blood microbiome upon bloodstream infection are not known. Here, we analyzed the dynamics of the blood microbiome in a porcine model of polymicrobial bacteremia induced by fecal peritonitis. Surprisingly, we detected bacterial populations in the bloodstream even before the infection, and these populations were maintained over time. The native blood microbiome was notably taxonomically different from the fecal microbiome that was used to induce peritonitis, reflecting microbial tropism for the blood. Although the population composition after the infection was similar to that of the native blood microbiome, new bacterial strains entered the bloodstream upon peritonitis induction as clinical symptoms relevant to sepsis developed. This indicates that the bacteria detected in the blood before peritonitis induction were derived from the blood rather than a contamination. Comparison of the functional pathways enriched in the blood and fecal microbiomes revealed that communication and stress management pathways are essential for the survival of the blood microbiome.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Peritonitis , Animales , Heces , Porcinos , Tropismo
13.
Mol Cells ; 44(9): 627-636, 2021 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-34588320

RESUMEN

The three-dimensional organization of chromatin and its time-dependent changes greatly affect virtually every cellular function, especially DNA replication, genome maintenance, transcription regulation, and cell differentiation. Sequencing-based techniques such as ChIP-seq, ATAC-seq, and Hi-C provide abundant information on how genomic elements are coupled with regulatory proteins and functionally organized into hierarchical domains through their interactions. However, visualizing the time-dependent changes of such organization in individual cells remains challenging. Recent developments of CRISPR systems for site-specific fluorescent labeling of genomic loci have provided promising strategies for visualizing chromatin dynamics in live cells. However, there are several limiting factors, including background signals, off-target binding of CRISPR, and rapid photobleaching of the fluorophores, requiring a large number of target-bound CRISPR complexes to reliably distinguish the target-specific foci from the background. Various modifications have been engineered into the CRISPR system to enhance the signal-to-background ratio and signal longevity to detect target foci more reliably and efficiently, and to reduce the required target size. In this review, we comprehensively compare the performances of recently developed CRISPR designs for improved visualization of genomic loci in terms of the reliability of target detection, the ability to detect small repeat loci, and the allowed time of live tracking. Longer observation of genomic loci allows the detailed identification of the dynamic characteristics of chromatin. The diffusion properties of chromatin found in recent studies are reviewed, which provide suggestions for the underlying biological processes.


Asunto(s)
Sistemas CRISPR-Cas/genética , Cromatina/metabolismo , Genómica/métodos , Humanos
14.
J Forensic Sci ; 66(4): 1538-1544, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33899938

RESUMEN

Piophilidae are a relatively small family of Diptera that is frequently associated with cadavers at advanced stages of decomposition and are, therefore, considered potentially useful forensic indicators. However, their use in forensic investigations is typically hampered by a deficiency in reliable identification tools. This is particularly evident in countries such as South Korea, where forensic entomology is still in its infancy and the diversity of forensically relevant insect taxa remains largely undocumented. In the present study, we used cytochrome c oxidase subunit I (COI) barcodes to identify samples of piophilid larvae collected during medicolegal investigations performed in South Korea. A total of 174 COI sequences were obtained and have been made publicly available, thus augmenting the reference barcode library for forensically important Piophilidae species. Of the 174 sequenced samples, 172 were identified as Stearibia nigriceps (Meigen), whereas the two remaining samples may represent a previously unsequenced piophilid species. Stearibia nigriceps is recorded from South Korea for the first time, and our results suggest that it might be a particularly relevant forensic indicator in certain case types and scenarios in that country. The findings of this study highlight the utility of COI barcodes for achieving accurate identification of entomological samples, even by non-specialist forensic practitioners. They also contribute to the further development and consolidation of forensic entomology in South Korea and eastern Asia.


Asunto(s)
Código de Barras del ADN Taxonómico , Dípteros/genética , Complejo IV de Transporte de Electrones , Entomología Forense , Animales , Conducta Alimentaria , Humanos , Larva , Filogenia , Cambios Post Mortem , República de Corea , Análisis de Secuencia de ADN
15.
Can J Gastroenterol Hepatol ; 2020: 8820445, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33354557

RESUMEN

Background: The prevalence of nonalcoholic fatty liver disease (NAFLD) has been increasing in the general population. This study evaluated the association between NAFLD and significant coronary stenosis in asymptomatic adults and evaluated sex-based differences. Methods: We performed a retrospective cross-sectional study in participants without previous cardiovascular diseases who visited the Seoul National University Hospital Health Promotion Center for a health checkup between January 1, 2010, and December 31, 2015. NAFLD was diagnosed on sonography, while coronary artery stenosis (CAS) was assessed on coronary computed tomography angiography (CCTA). Results: We obtained 3,693 participants who met the inclusion criteria, and 3,449 of them had no significant stenosis. Among the participants with significant stenosis, the prevalence of NAFLD was 59.4% (145 patients). The prevalence of NAFLD was 47.26% in male participants, which was higher than that in female participants. The association between NAFLD and significant CAS persisted after adjusting for age, body mass index, glycated hemoglobin, and Framingham risk factors. The correlation between NAFLD and significant coronary stenosis appeared to be stronger in women than in men, but the absolute risk was higher in men than in women. Conclusion: NAFLD was strongly associated with CAS. We should be alert about an increased cardiovascular risk in patients with NAFLD and more intensively provide primary prevention by performing tests to detect subclinical atherosclerosis.


Asunto(s)
Aterosclerosis , Enfermedad del Hígado Graso no Alcohólico , Adulto , Aterosclerosis/diagnóstico por imagen , Aterosclerosis/epidemiología , Estudios Transversales , Femenino , Humanos , Masculino , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Enfermedad del Hígado Graso no Alcohólico/diagnóstico por imagen , Enfermedad del Hígado Graso no Alcohólico/epidemiología , Prevalencia , Estudios Retrospectivos , Factores de Riesgo
16.
Biomed Res Int ; 2020: 6235848, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33062688

RESUMEN

Phoridae are a family of necrophagous flies commonly found in indoor death scene. They account for approximately 19.7% of the entomofauna in human cadavers in Korea. Additionally, this taxon is an indicator of indoor hygiene, and these flies appear in environments where access by other necrophagous insects is difficult, such as enclosed rooms. Thus, they are likely to be used as forensic evidence. Despite their importance in forensic investigations and environmental hygiene, detailed studies on the taxonomy and molecular barcoding for this family are scarce, including in Korea. Because accurate taxonomic information regarding necrophagous insects collected from a death-related scene is essential during medicolegal investigations, molecular barcoding data could be useful as well as reliable. In this paper, full-length nucleotide sequences of genes coding for the cytochrome c oxidase subunit I (COI) in 79 Phoridae larvae collected from 20 medicolegal autopsy cases in Korea were phylogenetically analyzed by comparing their sequences to the foreign barcoding data of Phoridae. Six mitochondrial haplogroups were identified, which two of them matched to foreign Phoridae fly species haplotypes, Megaselia scalaris (Loew, 1866) and M. spiracularis Schmitz 1938. Taxonomies of five other haplogroups, with nucleotide distances ranging from 1.68% to 2.26% from the M. scalaris group, could not be confirmed solely based on the molecular barcoding data. Further research should be performed to determine whether these five haplogroups are diverged conspecifics of M. scalaris or a closely related sister cryptic species of M. scalaris.


Asunto(s)
Dípteros , Complejo IV de Transporte de Electrones/genética , Medicina Legal/métodos , Genes de Insecto/genética , Animales , Cadáver , Código de Barras del ADN Taxonómico , Dípteros/clasificación , Dípteros/genética , Humanos , Larva/genética , República de Corea
17.
Genome Res ; 30(9): 1306-1316, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32887690

RESUMEN

The higher-order structural organization and dynamics of the chromosomes play a central role in gene regulation. To explore this structure-function relationship, it is necessary to directly visualize genomic elements in living cells. Genome imaging based on the CRISPR system is a powerful approach but has limited applicability due to background signals and nonspecific aggregation of fluorophores within nuclei. To address this issue, we developed a novel visualization scheme combining tripartite fluorescent proteins with the SunTag system and demonstrated that it strongly suppressed background fluorescence and amplified locus-specific signals, allowing long-term tracking of genomic loci. We integrated the multicomponent CRISPR system into stable cell lines to allow quantitative and reliable analysis of dynamic behaviors of genomic loci. Due to the greatly elevated signal-to-background ratio, target loci with only small numbers of sequence repeats could be successfully tracked, even under a conventional fluorescence microscope. This feature enables the application of CRISPR-based imaging to loci throughout the genome and opens up new possibilities for the study of nuclear processes in living cells.


Asunto(s)
Sistemas CRISPR-Cas , Proteínas Fluorescentes Verdes/genética , Células Cultivadas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Estructuras Genéticas , Técnicas Genéticas , Proteínas Fluorescentes Verdes/química , Células HEK293 , Humanos , Procesamiento de Imagen Asistido por Computador
18.
Nat Commun ; 11(1): 4281, 2020 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-32855416

RESUMEN

Controlling efficiency and fidelity in the early stage of mitochondrial DNA transcription is crucial for regulating cellular energy metabolism. Conformational transitions of the transcription initiation complex must be central for such control, but how the conformational dynamics progress throughout transcription initiation remains unknown. Here, we use single-molecule fluorescence resonance energy transfer techniques to examine the conformational dynamics of the transcriptional system of yeast mitochondria with single-base resolution. We show that the yeast mitochondrial transcriptional complex dynamically transitions among closed, open, and scrunched states throughout the initiation stage. Then abruptly at position +8, the dynamic states of initiation make a sharp irreversible transition to an unbent conformation with associated promoter release. Remarkably, stalled initiation complexes remain in dynamic scrunching and unscrunching states without dissociating the RNA transcript, implying the existence of backtracking transitions with possible regulatory roles. The dynamic landscape of transcription initiation suggests a kinetically driven regulation of mitochondrial transcription.


Asunto(s)
Mitocondrias/genética , Saccharomyces cerevisiae/genética , Iniciación de la Transcripción Genética , Adenosina Trifosfato , ADN de Hongos/genética , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , ARN de Hongos/genética , ARN de Hongos/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Imagen Individual de Molécula/métodos , Elongación de la Transcripción Genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
19.
EBioMedicine ; 58: 102926, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32739873

RESUMEN

BACKGROUND: High recurrence and chemoresistance drive the high mortality in hepatocellular carcinoma (HCC). Although cancer stem cells are considered to be the source of recurrent and chemoresistant tumors, they remain poorly defined in HCC. Tonicity-responsive enhancer binding protein (TonEBP) is elevated in almost all HCC tumors and associated with recurrence and death. We aimed to identify function of TonEBP in stemness and chemoresistance of liver cancer. METHODS: Tumors obtained from 280 HCC patients were analyzed by immunohistochemical analyses. Stemness and chemoresistance of liver CSCs (LCSCs) were investigated using cell culture. Tumor-initiating activity was measured by implanting LCSCs into BALB/c nude mice. FINDINGS: Expression of TonEBP is higher in LCSCs in HCC cell lines and correlated with markers of LCSCs whose expression is significantly associated with poor prognosis of HCC patients. TonEBP mediates ATM-mediated activation of NF-κB, which stimulates the promoter of a key stem cell transcription factor SOX2. As expected, TonEBP is required for the tumorigenesis and self-renewal of LSCSs. Cisplatin induces the recruitment of the ERCC1/XPF dimer to the chromatin in a TonEBP-dependent manner leading to DNA repair and cisplatin resistance. The cisplatin-induced inflammation in LSCSs is also dependent on the TonEBP-ERCC1/XPF complex, and leads to enhanced stemness via the ATM-NF-κB-SOX2 pathway. In HCC patients, tumor expression of ERCC1/XPF predicts recurrence and death in a TonEBP-dependent manner. INTERPRETATION: TonEBP promotes stemness and cisplatin resistance of HCC via ATM-NF-κB. TonEBP is a key regulator of LCSCs and a promising therapeutic target for HCC and its recurrence.


Asunto(s)
Carcinoma Hepatocelular/patología , Proteínas de Unión al ADN/metabolismo , Resistencia a Antineoplásicos , Endonucleasas/metabolismo , Neoplasias Hepáticas/patología , Células Madre Neoplásicas/patología , Factores de Transcripción/genética , Animales , Biomarcadores de Tumor/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Cisplatino/farmacología , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Persona de Mediana Edad , Células Madre Neoplásicas/metabolismo , Pronóstico , Regulación hacia Arriba , Ensayos Antitumor por Modelo de Xenoinjerto
20.
J Nanosci Nanotechnol ; 20(8): 4619-4623, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32126628

RESUMEN

Oxidized porous silicon (OPS) nanoparticles covalent-bonded with levofloxacin in hydrogel polymer are prepared and used to measure the efficiency for the controlled release drug delivery. Levofloxacin is covalently bonded to a Si-OH surface of OPS nanoparticles by catalytic condensation. The average size of these particles is about 100 nm. Since levofloxacin has a fluorescence property, the release of levofloxacin has been measured by fluorescence spectrometer. The quantity of levofloxacin release from the OPS nanoparticles is measured at the emission wavelength at 455 nm with an excitation wavelength of 330 nm on a time scale in pH 7 aqueous buffer solution. The analysis of release profile reveals that the OPS covalently bonded with levofloxacin (Levo-OPS) exhibits a great potential candidate for controlled release. The drug-release rate depends on the hydrolysis of silyl ester from the surface of OPS nanoparticles.


Asunto(s)
Levofloxacino , Nanopartículas , Sistemas de Liberación de Medicamentos , Hidrogeles , Tamaño de la Partícula , Polímeros , Porosidad , Silicio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...