Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 18(34): 23331-23340, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39151059

RESUMEN

Iridium, the most widely used anode catalyst in proton exchange membrane water electrolysis (PEMWE), must be used minimally due to its high price and limited supply. However, reducing iridium loading poses challenges due to abnormally large anode polarization. Herein, we present an anode catalyst layer (CL) based on a one-dimensional iridium nanofiber that enables a high current density operation of 3 A cm-2 at 1.86 V, even at an ultralow loading (0.07 mgIr cm-2). The performance is maintained even with a Pt coating-free porous transport layer (PTL) because our nanofiber CL circumvents the interfacial electron transport problem caused by the native oxide on the Ti PTL. We attribute this to the low work function and the low-ionomer-exposed surface of the nanofiber CL, which prevent the formation of Schottky contact at the native oxide interface. These results highlight the significance of optimizing the electronic properties of the CL/PTL interface for low-iridium-loading PEMWE.

2.
Nano Lett ; 24(23): 6850-6857, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38721815

RESUMEN

Solid-state polymer-based electrolytes (SSPEs) exhibit great possibilities in realizing high-energy-density solid-state lithium metal batteries (SSLMBs). However, current SSPEs suffer from low ionic conductivity and unsatisfactory interfacial compatibility with metallic Li because of the high crystallinity of polymers and sluggish Li+ movement in SSPEs. Herein, differing from common strategies of copolymerization, a new strategy of constructing a high-entropy SSPE from multivariant polymeric ligands is proposed. As a protocol, poly(vinylidene fluoride-co-hexafluoropropylene) (PH) chains are grafted to the demoed polyethylene imine (PEI) with abundant -NH2 groups via a click-like reaction (HE-PEIgPHE). Compared to a PH-based SSPE, our HE-PEIgPHE shows a higher modulus (6.75 vs 5.18 MPa), a higher ionic conductivity (2.14 × 10-4 vs 1.03 × 10-4 S cm-1), and a higher Li+ transference number (0.55 vs 0.42). A Li|HE-PEIgPHE|Li cell exhibits a long lifetime (1500 h), and a Li|HE-PEIgPHE|LiFePO4 cell delivers an initial capacity of 160 mAh g-1 and a capacity retention of 98.7%, demonstrating the potential of our HE-PEIgPHE for the SSLMBs.

3.
ACS Appl Mater Interfaces ; 16(4): 4637-4647, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38251952

RESUMEN

The interface between the catalyst and the ionomer in the catalyst layer of polymer electrolyte membrane fuel cells (PEMFCs) has been a subject of keen interest, but its effect on durability has not been fully understood due to the complexity of the catalyst layer structure. Herein, we utilize a Pt nanoparticle (NP) array electrode fabricated using a block copolymer template as the platform for a focused investigation of the interfacial change between the Nafion thin film and the Pt NP under a constant potential. A set of analyses for the electrodes treated with various potentials reveals that the Nafion thin film becomes densely packed at the intermediate potentials (0.4 and 0.7 V), indicating an increased ionomer-catalyst interaction due to the positive charges formed at the Pt surface at these potentials. Even for a practical PEMFC single cell, we demonstrate that the potential holding at the intermediate potentials increases ionomer adsorption to the Pt surface and the oxygen transport resistance, negatively impacting its power performance. This work provides fresh insight into the mechanism behind the performance fade in PEMFCs caused by potential-dependent ionomer rearrangement.

4.
Nat Commun ; 14(1): 4047, 2023 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-37422498

RESUMEN

The pulverization of lithium metal electrodes during cycling recently has been suppressed through various techniques, but the issue of irreversible consumption of the electrolyte remains a critical challenge, hindering the progress of energy-dense lithium metal batteries. Here, we design a single-ion-conductor-based composite layer on the lithium metal electrode, which significantly reduces the liquid electrolyte loss via adjusting the solvation environment of moving Li+ in the layer. A Li||Ni0.5Mn0.3Co0.2O2 pouch cell with a thin lithium metal (N/P of 2.15), high loading cathode (21.5 mg cm-2), and carbonate electrolyte achieves 400 cycles at the electrolyte to capacity ratio of 2.15 g Ah-1 (2.44 g Ah-1 including mass of composite layer) or 100 cycles at 1.28 g Ah-1 (1.57 g Ah-1 including mass of composite layer) under a stack pressure of 280 kPa (0.2 C charge with a constant voltage charge at 4.3 V to 0.05 C and 1.0 C discharge within a voltage window of 4.3 V to 3.0 V). The rational design of the single-ion-conductor-based composite layer demonstrated in this work provides a way forward for constructing energy-dense rechargeable lithium metal batteries with minimal electrolyte content.


Asunto(s)
Líquidos Corporales , Litio , Electrólitos , Iones , Metales
5.
Small ; 19(43): e2302722, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37376876

RESUMEN

Tailoring the Li+ microenvironment is crucial for achieving fast ionic transfer and a mechanically reinforced solid-electrolyte interphase (SEI), which administers the stable cycling of Li-metal batteries (LMBs). Apart from traditional salt/solvent compositional tuning, this study presents the simultaneous modulation of Li+ transport and SEI chemistry using a citric acid (CA)-modified silica-based colloidal electrolyte (C-SCE). CA-tethered silica (CA-SiO2 ) can render more active sites for attracting complex anions, leading to further dissociation of Li+ from the anions, resulting in a high Li+ transference number (≈0.75). Intermolecular hydrogen bonds between solvent molecules and CA-SiO2 and their migration also act as nano-carrier for delivering additives and anions toward the Li surface, reinforcing the SEI via the co-implantation of SiO2 and fluorinated components. Notably, C-SCE demonstrated Li dendrite suppression and improved cycling stability of LMBs compared with the CA-free SiO2 colloidal electrolyte, hinting that the surface properties of the nanoparticles have a huge impact on the dendrite-inhibiting role of nano colloidal electrolytes.

6.
Adv Sci (Weinh) ; 10(15): e2301006, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36943003

RESUMEN

Salt anions with a high donor number (DN) enable high sulfur utilization in lithium-sulfur (Li-S) batteries by inducing three-dimensional (3D) Li2 S growth. However, their insufficient compatibility with Li metal electrodes limits their cycling stability. Herein, a new class of salt anion, thiocyanate (SCN- ), is presented, which features a Janus character of electron donor and acceptor. Due to a strong Li+ coordination by SCN- and the direct interaction of SCN- with polysulfide anions, the LiSCN electrolyte has a remarkably high lithium polysulfide solubility. This electrolyte induces 3D Li2 S formation and ameliorates cathode passivation, even more than Br- , a typical high DN anion. Moreover, SCN- forms a Li3 N-enriched stable SEI layer at the surface of the Li metal electrode, enhancing cycling stability. A Li-S battery with the LiSCN electrolyte shows high current density operation (2.54 mA cm⁻2 ) with high discharge capacity (1133 mAh g⁻1 ) and prolonged cycle life (100 cycles). This work demonstrates that the cathode and anode performance in a Li-S battery can be simply and concurrently enhanced by the single salt anion.

7.
Small ; 19(30): e2208280, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36965037

RESUMEN

High electrochemical polarization during a redox reaction in the electrode of aqueous zinc-bromine flow batteries largely limits its practical implementation as an effective energy storage system. This study demonstrates a rationally-designed composite electrode that exhibits a lower electrochemical polarization by providing a higher number of catalytically-active sites for faster bromine reaction, compared to a conventional graphite felt cathode. The composite electrode is composed of electrically-conductive graphite felt (GF) and highly active mesoporous tungsten oxynitride nanofibers (mWONNFs) that are prepared by electrospinning and simple heat treatments. Addition of the 1D mWONNFs to porous GF produces a web-like structure that significantly facilitates the reaction kinetics and ion diffusion. The cell performance achieves in this study demonstrated high energy efficiencies of 89% and 80% at current densities of 20 and 80 mA cm-2 , respectively. Furthermore, the cell can also be operated at a very high current density of 160 mA cm-2 , demonstrating an energy efficiency of 62%. These results demonstrate the effectiveness of the mWONNF/GF composite as the electrode material in zinc-bromine flow batteries.

8.
Adv Sci (Weinh) ; 9(36): e2204908, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36310120

RESUMEN

A deep eutectic solvent (DES) is an ionic liquid-analog electrolyte, newly emerging due to its low cost, easy preparation, and tunable properties. Herein, a zinc-bromine battery (ZBB) with a Zn-halide-based DES electrolyte prepared by mixing ZnBr2 , ZnCl2 , and a bromine-capturing agent is reported. The water-free DES electrolyte allows a closed-cell configuration for the ZBB owing to the prevention of Br2 evaporation and H2 evolution. It is found that the Cl- anion changes the structure of the zinc-halide complex anions and demonstrated that it improves the ion mobility and electrode reaction kinetics. The DES electrolyte with the optimized ZnCl2 composition shows much higher rate capability and a cycle life 90 times longer than that of a ZnCl2 -free DES electrolyte. A pouch-type flexible ZBB battery based on the DES electrolyte exhibits swelling-free operation for more than 120 cycles and stable operation under a folding test, suggesting its potential in consumer applications such as wearable electronics.

9.
Nano Lett ; 22(13): 5069-5076, 2022 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-35648998

RESUMEN

Structural colors have advantages compared with chemical pigments or dyes, such as iridescence, tunability, and unfading. Many studies have focused on developing the ability to switch ON/OFF the structural color; however, they often suffer from a simple and single stimulus, remaining structural colors, and target selectivity. Herein, we present regionally controlled multistimuli-responsive structural color switching surfaces. The key part is the utilization of a micropatterned DNA-hydrogel assembly on a single substrate. Each hydrogel network contains a unique type of stimuli-responsive DNA motifs as an additional cross-linker to exhibit swelling/deswelling via stimuli-responsive DNA interactions. The approach enables overcoming the existing limitations and selectively programming the DNA-hydrogel to a decrypted state (ON) and an encrypted state (OFF) in response to multiple stimuli. Furthermore, the transitions are reversible, providing cyclability. We envision the potential of our method for diverse applications, such as sensors or anticounterfeiting, requiring multistimuli-responsive structural color switching surfaces.


Asunto(s)
ADN , Hidrogeles , Colorantes , ADN/química , Hidrogeles/química
10.
Small ; 18(25): e2201163, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35499187

RESUMEN

Zinc ion batteries are promising candidates for large-scale energy storage systems. However, they suffer from the critical problems of insufficient cycling stability due to internal short-circuiting by zinc dendrites and zinc metal orphaning. In this work, a polymer of intrinsic microporosity (PIM-1) is reported as an ion regulating layer and an interface modulator, which promotes a uniform Zn plating and stripping process. According to spectroscopic analyses and computational calculations, PIM-1 enhances the reaction kinetics of a Zn metal electrode by altering the solvation structure of Zn2+ ions and increasing the work function of the Zn surface. As a result, the PIM-1 coating significantly improves the cyclability (1700 h at 0.5 mA cm-2 ) and Coulombic efficiency (99.6% at 3 mA cm-2 ) of the Zn/Zn2+ redox reaction. Moreover, the PIM-1 coated Zn operates for more than 200 h at 70% Zn utilization even under 10 mA cm-2 and 110 h at 95% Zn utilization of the Zn metal electrode. A Zn||V2 O5 full cell employing the PIM-1 layer exhibits seven times longer cycle life compared to the cell using bare Zn. The findings in this report demonstrate the potential of microporous materials as a key ingredient in the design of reversible Zn electrodes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA