Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 131(16): 166601, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37925728

RESUMEN

Entanglement entropies of two-dimensional gapped ground states are expected to satisfy an area law, with a constant correction term known as the topological entanglement entropy (TEE). In many models, the TEE takes a universal value that characterizes the underlying topological phase. However, the TEE is not truly universal: it can differ even for two states related by constant-depth circuits, which are necessarily in the same phase. The difference between the TEE and the value predicted by the anyon theory is often called the "spurious" topological entanglement entropy. We show that this spurious contribution is always non-negative, thus the value predicted by the anyon theory provides a universal lower bound. This observation also leads to a definition of TEE that is invariant under constant-depth quantum circuits.

2.
Sci Adv ; 8(20): eabn1717, 2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35594359

RESUMEN

Vast numbers of qubits will be needed for large-scale quantum computing because of the overheads associated with error correction. We present a scheme for low-overhead fault-tolerant quantum computation based on quantum low-density parity-check (LDPC) codes, where long-range interactions enable many logical qubits to be encoded with a modest number of physical qubits. In our approach, logic gates operate via logical Pauli measurements that preserve both the protection of the LDPC codes and the low overheads in terms of the required number of additional qubits. Compared with surface codes with the same code distance, we estimate order-of-magnitude improvements in the overheads for processing around 100 logical qubits using this approach. Given the high thresholds demonstrated by LDPC codes, our estimates suggest that fault-tolerant quantum computation at this scale may be achievable with a few thousand physical qubits at comparable error rates to what is needed for current approaches.

3.
Phys Rev Lett ; 128(17): 176402, 2022 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-35570463

RESUMEN

A (2+1)-dimensional gapped quantum many-body system can have a topologically protected energy current at its edge. The magnitude of this current is determined entirely by the temperature and the chiral central charge, a quantity associated with the effective field theory of the edge. We derive a formula for the chiral central charge that, akin to the topological entanglement entropy, is completely determined by the many-body ground state wave function in the bulk. According to our formula, nonzero chiral central charge gives rise to a topological obstruction that prevents the ground state wave function from being real valued in any local product basis.

4.
Phys Rev Lett ; 129(26): 260402, 2022 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-36608201

RESUMEN

The modular commutator is a recently discovered entanglement quantity that quantifies the chirality of the underlying many-body quantum state. In this Letter, we derive a universal expression for the modular commutator in conformal field theories in 1+1 dimensions and discuss its salient features. We show that the modular commutator depends only on the chiral central charge and the conformal cross ratio. We test this formula for a gapped (2+1)-dimensional system with a chiral edge, i.e., the quantum Hall state, and observe excellent agreement with numerical simulations. Furthermore, we propose a geometric dual for the modular commutator in certain preferred states of the AdS/CFT correspondence. For these states, we argue that the modular commutator can be obtained from a set of crossing angles between intersecting Ryu-Takayanagi surfaces.

5.
Phys Rev Lett ; 126(14): 141602, 2021 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-33891433

RESUMEN

We study the ground-state entanglement of gapped domain walls between topologically ordered systems in two spatial dimensions. We derive a universal correction to the ground-state entanglement entropy, which is equal to the logarithm of the total quantum dimension of a set of superselection sectors localized on the domain wall. This expression is derived from the recently proposed entanglement bootstrap method.

6.
Phys Rev Lett ; 116(2): 027202, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26824563

RESUMEN

The cubic code model is studied in the presence of arbitrary extensive perturbations. Below a critical perturbation strength, we show that most states with finite energy are localized; the overwhelming majority of such states have energy concentrated around a finite number of defects, and remain so for a time that is near exponential in the distance between the defects. This phenomenon is due to an emergent superselection rule and does not require any disorder. Local integrals of motion for these finite energy sectors are identified as well. Our analysis extends more generally to systems with immobile topological excitations.

7.
Phys Rev Lett ; 113(26): 260501, 2014 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-25615291

RESUMEN

We consider the problem of reconstructing global quantum states from local data. Because the reconstruction problem has many solutions in general, we consider the reconstructed state of maximum global entropy consistent with the local data. We show that unique ground states of local Hamiltonians are exactly reconstructed as the maximal entropy state. More generally, we show that if the state in question is a ground state of a local Hamiltonian with a degenerate space of locally indistinguishable ground states, then the maximal entropy state is close to the ground state projector. We also show that local reconstruction is possible for thermal states of local Hamiltonians. Finally, we discuss a procedure to certify that the reconstructed state is close to the true global state. We call the entropy of our reconstructed maximum entropy state the "reconstruction entropy," and we discuss its relation to emergent geometry in the context of holographic duality.

8.
Phys Rev Lett ; 111(8): 080503, 2013 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-24010422

RESUMEN

A general inequality between entanglement entropy and a number of topologically ordered states is derived, even without using the properties of the parent Hamiltonian or the formalism of topological quantum field theory. Given a quantum state |ψ], we obtain an upper bound on the number of distinct states that are locally indistinguishable from |ψ]. The upper bound is determined only by the entanglement entropy of some local subsystems. As an example, we show that log N≤2γ for a large class of topologically ordered systems on a torus, where N is the number of topologically protected states and γ is the constant subcorrection term of the entanglement entropy. We discuss applications to quantum many-body systems that do not have any low-energy topological quantum field theory description, as well as tradeoff bounds for general quantum error correcting codes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...