RESUMEN
PIK3CA is the most commonly altered oncogene in head and neck squamous cell carcinoma (HNSCC). We evaluated the impact of nonsteroidal anti-inflammatory drugs (NSAIDs) on survival in a PIK3CA-characterized cohort of 266 HNSCC patients and explored the mechanism in relevant preclinical models including patient-derived xenografts. Among subjects with PIK3CA mutations or amplification, regular NSAID use (≥6 mo) conferred markedly prolonged disease-specific survival (DSS; hazard ratio 0.23, P = 0.0032, 95% CI 0.09-0.62) and overall survival (OS; hazard ratio 0.31, P = 0.0043, 95% CI 0.14-0.69) compared with nonregular NSAID users. For PIK3CA-altered HNSCC, predicted 5-yr DSS was 72% for NSAID users and 25% for nonusers; predicted 5-yr OS was 78% for regular NSAID users and 45% for nonregular users. PIK3CA mutation predicted sensitivity to NSAIDs in preclinical models in association with increased systemic PGE2 production. These findings uncover a biologically plausible rationale to implement NSAID therapy in PIK3CA-altered HNSCC.
Asunto(s)
Antiinflamatorios no Esteroideos/administración & dosificación , Carcinoma de Células Escamosas , Fosfatidilinositol 3-Quinasa Clase I , Neoplasias de Cabeza y Cuello , Mutación , Proteínas de Neoplasias , Adulto , Anciano , Animales , Carcinoma de Células Escamosas/enzimología , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/mortalidad , Carcinoma de Células Escamosas/terapia , Fosfatidilinositol 3-Quinasa Clase I/genética , Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Supervivencia sin Enfermedad , Femenino , Neoplasias de Cabeza y Cuello/enzimología , Neoplasias de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/mortalidad , Neoplasias de Cabeza y Cuello/terapia , Humanos , Masculino , Ratones , Ratones Endogámicos NOD , Persona de Mediana Edad , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Tasa de Supervivencia , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
High-risk human papillomaviruses (HPVs) deregulate epidermal differentiation and cause anogenital and head and neck squamous cell carcinomas (SCCs). The E7 gene is considered the predominant viral oncogene and drives proliferation and genome instability. While the implementation of routine screens has greatly reduced the incidence of cervical cancers which are almost exclusively HPV positive, the proportion of HPV-positive head and neck SCCs is on the rise. High levels of HPV oncogene expression and genome load are linked to disease progression, but genetic risk factors that regulate oncogene abundance and/or genome amplification remain poorly understood. Fanconi anemia (FA) is a genome instability syndrome characterized at least in part by extreme susceptibility to SCCs. FA results from mutations in one of 15 genes in the FA pathway, whose protein products assemble in the nucleus and play important roles in DNA damage repair. We report here that loss of FA pathway components FANCA and FANCD2 stimulates E7 protein accumulation in human keratinocytes and causes increased epithelial proliferation and basal cell layer expansion in the HPV-positive epidermis. Additionally, FANCD2 loss stimulates HPV genome amplification in differentiating cells, demonstrating that the intact FA pathway functions to restrict the HPV life cycle. These findings raise the possibility that FA genes suppress HPV infection and disease and suggest possible mechanism(s) for reported associations of HPV with an FA cohort in Brazil and for allelic variation of FA genes with HPV persistence in the general population.