Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 10(1): 14742, 2020 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-32901069

RESUMEN

Flattened plates often show the lower or higher yield strength than initial leveled plates because tensile and compressive strains are repeatedly experienced at outer and inner walls during the pipe-forming and flattening, but reasons for the yield-strength variation after the pipe-forming are not sufficiently verified yet. In this study, ten line-pipe steels were fabricated by controlling alloying elements and finish rolling temperatures (FRTs), and the yield strength of pipe-flattened steel plates was predicted by using cyclic simulation tests, based on competing contributions of Bauschinger effect (BE) and strain hardening (SH) effect quantified from yield drop (YD) and yield rise (YR) parameters, respectively. High-FRT-treated steels (H steels) showed the lower BE and the higher SH than low-FRT-treated steels (L steels), thereby resulting in the smaller yield-strength reduction. This lower BE in the H steels was caused by the lower total boundary density, while the higher SH was caused by the higher fraction of granular bainite. According to the SH analyses between the YR parameters obtained from cyclic simulation tests and the yield ratios obtained from ordinary tensile tests, the decrease in yield-strength reduction with decreasing yield ratio was not attributed to the increase in ordinary tensile SH but to the increase in YR parameter.

2.
Sci Rep ; 9(1): 14002, 2019 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-31570742

RESUMEN

Since flattened steel sheets often show the unexpectedly lower or higher yield strength than leveled sheets, unceasing efforts have been made to accurately predict the yield strength in pipe-forming industries. In the present investigation, the yield strength of line-pipe or casing-pipe steels was predicted by competing Bauschinger effect and strain hardening occurred during the pipe-forming. Yield drop (YD) and yield rise (YR) parameters were newly defined from cyclic simulation analyses of outer and inner walls of pipes to express more reasonably the Bauschinger effect and strain hardening. The YD increased abruptly until the pre-strain of about 1%, and then saturated, while the YR increased linearly with increasing pre-strain. By combining the YD and YR, the variation in yield strength (Δσ) showed a down-and-up behavior as the Bauschinger effect and strain hardening were dominant at low and high pre-strains, respectively, and plausibly explained the relationship of Δσ and piping strain used in pipe-forming industries. According to the microstructural analyses related to the down-and-up Δσ behavior, the polygonal ferrite reduced the yield-strength reduction in the low pre-strain range, whereas the granular bainite or pearlite expanded it. This yield strength prediction coupled with microstructural analyses provide a good idea for designing and reliably predicting the yield strength of in various steel pipes.

3.
Sci Rep ; 8(1): 15598, 2018 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-30348971

RESUMEN

Linepipe steels complexly consisted of low-temperature transformation microstructures of bainitic ferrite, granular bainite, and acicular ferrite (AF) as well as polygonal ferrite (PF) which individually affect the Bauschinger effect occurring during the pipe-forming. In this study, microscopic analyses of electron back-scattered diffraction (EBSD) coupled with tension-compression and interrupted bending tests were performed for verification of the Bauschinger effect of AF and PF working as major microstructures in single-phase- and two-phase-rolled API X80 steels, respectively. With respect to microstructural effects on Bauschinger effect, the reduction in mobile dislocation density during the flattening was smaller in the AF than in the PF. However, the dislocation pile-up at low-angle substructures and high-angle grain boundaries was more frequently observed, thereby leading to the higher back stress and Bauschinger effect in the AF. Boundary kernel average misorientation (KAM) profile played a critical role in determining the Bauschinger effect because they were closely related with the back stress. Thus, the Bauschinger effect was higher in the single-phase-rolled steel than in the two-phase-rolled steel. The present ex-situ interrupted bending methods coupled with EBSD analyses are outstanding ones for the detailed explanation of Bauschinger effect and provide an important idea for the yield strength designs of linepipe steels.

4.
Food Sci Biotechnol ; 26(2): 419-425, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-30263559

RESUMEN

For the development of elderly-friendly food, the physicochemical properties and preferences of cooked kkakdugi prepared with various blanching times were examined. As fermentation progressed, significant differences in samples were observed with overall decreasing trends of pH, reducing sugar, lightness (L), yellowness (b), and hardness. Titratable acidity, redness (a), and lactic acid increased during the storage time. The preference test showed that the sample blanched for 3 min (SK3) scored the highest in aroma, taste, texture, and overall acceptance. Overall, SK3 was the most preferred as cooked kkakdugi, which helps elderly people suffering from mastication and deglutition.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA