Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
EMBO Rep ; 24(4): e55607, 2023 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-36852890

RESUMEN

A functional centrosome is vital for the development and physiology of animals. Among numerous regulatory mechanisms of the centrosome, ubiquitin-mediated proteolysis is known to be critical for the precise regulation of centriole duplication. However, its significance beyond centrosome copy number control remains unclear. Using an in vitro screen for centrosomal substrates of the APC/C ubiquitin ligase in Drosophila, we identify several conserved pericentriolar material (PCM) components, including the inner PCM protein Spd2. We show that Spd2 levels are controlled by the interphase-specific form of APC/C, APC/CFzr , in cultured cells and developing brains. Increased Spd2 levels compromise neural stem cell-specific asymmetric PCM recruitment and microtubule nucleation at interphase centrosomes, resulting in partial randomisation of the division axis and segregation patterns of the daughter centrosome in the following mitosis. We further provide evidence that APC/CFzr -dependent Spd2 degradation restricts the amount and mobility of Spd2 at the daughter centrosome, thereby facilitating the accumulation of Polo-dependent Spd2 phosphorylation for PCM recruitment. Our study underpins the critical role of cell cycle-dependent proteolytic regulation of the PCM in stem cells.


Asunto(s)
Drosophila , Células-Madre Neurales , Animales , Centriolos/metabolismo , Centrosoma/metabolismo , Drosophila/fisiología , Mitosis , Ubiquitinas/metabolismo
3.
Open Biol ; 11(6): 200371, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34186008

RESUMEN

A feature of metazoan reproduction is the elimination of maternal centrosomes from the oocyte. In animals that form syncytial cysts during oogenesis, including Drosophila and human, all centrosomes within the cyst migrate to the oocyte where they are subsequently degenerated. The importance and the underlying mechanism of this event remain unclear. Here, we show that, during early Drosophila oogenesis, control of the Anaphase Promoting Complex/Cyclosome (APC/C), the ubiquitin ligase complex essential for cell cycle control, ensures proper transport of centrosomes into the oocyte through the regulation of Polo/Plk1 kinase, a critical regulator of the integrity and activity of the centrosome. We show that novel mutations in the APC/C-specific E2, Vihar/Ube2c, that affect its inhibitory regulation on APC/C cause precocious Polo degradation and impedes centrosome transport, through destabilization of centrosomes. The failure of centrosome migration correlates with weakened microtubule polarization in the cyst and allows ectopic microtubule nucleation in nurse cells, leading to the loss of oocyte identity. These results suggest a role for centrosome migration in oocyte fate maintenance through the concentration and confinement of microtubule nucleation activity into the oocyte. Considering the conserved roles of APC/C and Polo throughout the animal kingdom, our findings may be translated into other animals.


Asunto(s)
Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Centrosoma/metabolismo , Proteínas de Drosophila/genética , Drosophila/fisiología , Oocitos/metabolismo , Oogénesis , Proteínas Serina-Treonina Quinasas/genética , Enzimas Ubiquitina-Conjugadoras/metabolismo , Alelos , Animales , Secuencia de Bases , Transporte Biológico , Biomarcadores , Proteínas de Drosophila/metabolismo , Regulación de la Expresión Génica , Genotipo , Oocitos/citología , Oogénesis/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Estabilidad Proteica , Proteolisis , Eliminación de Secuencia
4.
Structure ; 28(6): 674-689.e11, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32375023

RESUMEN

Centrioles are cylindrical assemblies whose peripheral microtubule array displays a 9-fold rotational symmetry that is established by the scaffolding protein SAS6. Centriole symmetry can be broken by centriole-associated structures, such as the striated fibers in Chlamydomonas that are important for ciliary function. The conserved protein CCDC61/VFL3 is involved in this process, but its exact role is unclear. Here, we show that CCDC61 is a paralog of SAS6. Crystal structures of CCDC61 demonstrate that it contains two homodimerization interfaces that are similar to those found in SAS6, but result in the formation of linear filaments rather than rings. Furthermore, we show that CCDC61 binds microtubules and that residues involved in CCDC61 microtubule binding are important for ciliary function in Chlamydomonas. Together, our findings suggest that CCDC61 and SAS6 functionally diverged from a common ancestor while retaining the ability to scaffold the assembly of basal body-associated structures or centrioles, respectively.


Asunto(s)
Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Chlamydomonas/fisiología , Cilios/metabolismo , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Algáceas/química , Proteínas Algáceas/metabolismo , Línea Celular , Chlamydomonas/clasificación , Cristalografía por Rayos X , Células HEK293 , Humanos , Microtúbulos/metabolismo , Modelos Moleculares , Filogenia , Conformación Proteica , Dominios Proteicos , Multimerización de Proteína
5.
FEBS Lett ; 2020 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-32383482

RESUMEN

In multicellular organisms, cell proliferation must be tightly coordinated with other developmental processes to form functional tissues and organs. Despite significant advances in our understanding of how the cell cycle is controlled by conserved cell-cycle regulators (CCRs), how the cell cycle is coordinated with cell differentiation in metazoan organisms and how CCRs contribute to this process remain poorly understood. Here, we review the emerging roles of metazoan CCRs as intracellular proliferation-differentiation coordinators in multicellular organisms. We illustrate how major CCRs regulate cellular events that are required for cell fate acquisition and subsequent differentiation. To this end, CCRs employ diverse mechanisms, some of which are separable from those underpinning the conventional cell-cycle-regulatory functions of CCRs. By controlling cell-type-specific specification/differentiation processes alongside the progression of the cell cycle, CCRs enable spatiotemporal coupling between differentiation and cell proliferation in various developmental contexts in vivo. We discuss the significance and implications of this underappreciated role of metazoan CCRs for development, disease and evolution.

6.
Dev Cell ; 50(1): 11-24.e10, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31130353

RESUMEN

Defects in mitotic spindle orientation (MSO) disrupt the organization of stem cell niches impacting tissue morphogenesis and homeostasis. Mutations in centrosome genes reduce MSO fidelity, leading to tissue dysplasia and causing several diseases such as microcephaly, dwarfism, and cancer. Whether these mutations perturb spindle orientation solely by affecting astral microtubule nucleation or whether centrosome proteins have more direct functions in regulating MSO is unknown. To investigate this question, we analyzed the consequences of deregulating Plk4 (the master centriole duplication kinase) activity in Drosophila asymmetrically dividing neural stem cells. We found that Plk4 functions upstream of MSO control, orchestrating centriole symmetry breaking and consequently centrosome positioning. Mechanistically, we show that Plk4 acts through Spd2 phosphorylation, which induces centriole release from the apical cortex. Overall, this work not only reveals a role for Plk4 in regulating centrosome function but also links the centrosome biogenesis machinery with the MSO apparatus.


Asunto(s)
Proteínas Cdh1/metabolismo , Centriolos/fisiología , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Células-Madre Neurales/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Huso Acromático/fisiología , Animales , Proteínas Cdh1/genética , Ciclo Celular , Células Cultivadas , Centrosoma/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Femenino , Masculino , Células-Madre Neurales/citología , Fosforilación , Proteínas Serina-Treonina Quinasas/genética
7.
Trends Cell Biol ; 29(7): 591-603, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31000380

RESUMEN

The anaphase-promoting complex/cyclosome (APC/C) is an evolutionarily conserved ubiquitin ligase that controls cell cycle progression through spatiotemporally regulated proteolysis. Although recent studies revealed its postmitotic function, our knowledge of the role of APC/C beyond cell cycle regulation in the biology of multicellular organisms is far from complete. Here, I review recent advances in the function of APC/C in animal development, specifically focusing on its emerging role in regulating cell differentiation. I describe how APC/C regulates distinct processes during the course of differentiation by deploying diverse molecular machineries in a variety of developmental contexts. Also, I discuss the significance and clinical relevance of the unique capacity of APC/C and other cell cycle regulators to couple distinct cellular processes with cell proliferation control.


Asunto(s)
Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Diferenciación Celular , Fase G1 , Fase de Descanso del Ciclo Celular , Ubiquitina/metabolismo , Animales , Humanos
8.
Dev Cell ; 40(1): 67-80, 2017 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-28041905

RESUMEN

The cell cycle is coordinated with differentiation during animal development. Here we report a cell-cycle-independent developmental role for a master cell-cycle regulator, the anaphase-promoting complex or cyclosome (APC/C), in the regulation of cell fate through modulation of Wingless (Wg) signaling. The APC/C controls both cell-cycle progression and postmitotic processes through ubiquitin-dependent proteolysis. Through an RNAi screen in the developing Drosophila eye, we found that partial APC/C inactivation severely inhibits retinal differentiation independently of cell-cycle defects. The differentiation inhibition coincides with hyperactivation of Wg signaling caused by the accumulation of a Wg modulator, Drosophila Nek2 (dNek2). The APC/C degrades dNek2 upon synchronous G1 arrest prior to differentiation, which allows retinal differentiation through local suppression of Wg signaling. We also provide evidence that decapentaplegic signaling may posttranslationally regulate this APC/C function. Thus, the APC/C coordinates cell-fate determination with the cell cycle through the modulation of developmental signaling pathways.


Asunto(s)
Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Diferenciación Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Puntos de Control de la Fase G1 del Ciclo Celular , Proteínas Serina-Treonina Quinasas/metabolismo , Retina/citología , Transducción de Señal , Proteína Wnt1/metabolismo , Animales , Apoptosis , Regulación hacia Abajo , Drosophila melanogaster/citología , Discos Imaginales/citología , Discos Imaginales/metabolismo , Fenotipo , Subunidades de Proteína/metabolismo , Proteolisis , Especificidad por Sustrato
9.
Nat Commun ; 7: 12607, 2016 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-27558644

RESUMEN

A multi-subunit ubiquitin ligase, the anaphase-promoting complex/cyclosome (APC/C), regulates critical cellular processes including the cell cycle. To accomplish its diverse functions, APC/C activity must be precisely regulated in time and space. The interphase APC/C activator Fizzy-related (Fzr or Cdh1) is localized at centrosomes in animal cells. However, neither the mechanism of its localization nor its importance is clear. Here we identify the centrosome component Spd2 as a major partner of Fzr in Drosophila. The localization of Fzr to the centriole during interphase depends on direct interaction with Spd2. By generating Spd2 mutants unable to bind Fzr, we show that centrosomal localization of Fzr is essential for optimal APC/C activation towards its centrosomal substrate Aurora A. Finally, we show that Spd2 is also a novel APC/C(Fzr) substrate. Our study is the first to demonstrate the critical importance of distinct subcellular pools of APC/C activators in the spatiotemporal control of APC/C activity.


Asunto(s)
Proteínas Cdh1/metabolismo , Centrosoma/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/fisiología , Animales , Aurora Quinasa A/metabolismo , Proteínas Cdh1/genética , Proteínas de Drosophila/genética , Femenino , Interfase/fisiología , Mitosis/fisiología , Mutación , Unión Proteica/genética , Factores de Tiempo
10.
BioData Min ; 8: 30, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26405458

RESUMEN

BACKGROUND: The identification of interaction networks between proteins and complexes holds the promise of offering novel insights into the molecular mechanisms that regulate many biological processes. With increasing volumes of such datasets, especially in model organisms such as Drosophila melanogaster, there exists a pressing need for specialised tools, which can seamlessly collect, integrate and analyse these data. Here we describe a database coupled with a mining tool for protein-protein interactions (DAPPER), developed as a rich resource for studying multi-protein complexes in Drosophila melanogaster. RESULTS: This proteomics database is compiled through mass spectrometric analyses of many protein complexes affinity purified from Drosophila tissues and cultured cells. The web access to DAPPER is provided via an accelerated version of BioMart software enabling data-mining through customised querying and output formats. The protein-protein interaction dataset is annotated with FlyBase identifiers, and further linked to the Ensembl database using BioMart's data-federation model, thereby enabling complex multi-dataset queries. DAPPER is open source, with all its contents and source code are freely available. CONCLUSIONS: DAPPER offers an easy-to-navigate and extensible platform for real-time integration of diverse resources containing new and existing protein-protein interaction datasets of Drosophila melanogaster.

11.
Mol Biol Cell ; 22(9): 1486-94, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21389117

RESUMEN

Meiosis is a specialized form of cell division generating haploid gametes and is dependent upon protein ubiquitylation by the anaphase-promoting complex/cyclosome (APC/C). Accurate control of the APC/C during meiosis is important in all eukaryotic cells and is in part regulated by the association of coactivators and inhibitors. We previously showed that the fission yeast meiosis-specific protein Mes1 binds to a coactivator and inhibits APC/C; however, regulation of the Mes1-mediated APC/C inhibition remains elusive. Here we show how Mes1 distinctively regulates different forms of the APC/C. We study all the coactivators present in the yeast genome and find that only Slp1/Cdc20 is essential for meiosis I progression. However, Fzr1/Mfr1 is a critical target for Mes1 inhibition because fzr1Δ completely rescues the defect on the meiosis II entry in mes1Δ cells. Furthermore, cell-free studies suggest that Mes1 behaves as a pseudosubstrate for Fzr1/Mfr1 but works as a competitive substrate for Slp1. Intriguingly, mutations in the D-box or KEN-box of Mes1 increase its recognition as a substrate by Fzr1, but not by Slp1. Thus Mes1 interacts with two coactivators in a different way to control the activity of the APC/C required for the meiosis I/meiosis II transition.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/citología , Schizosaccharomyces/metabolismo , Anafase , Ciclosoma-Complejo Promotor de la Anafase , Proteínas Cdc20 , Proteínas Cdh1 , Meiosis , Mutación/genética , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Ubiquitinación
12.
J Biol Chem ; 284(36): 23989-94, 2009 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-19584054

RESUMEN

Fission yeast Atf1 is a member of the ATF/CREB basic leucine zipper (bZIP) family of transcription factors with strong homology to mammalian ATF2. Atf1 regulates transcription in response to stress stimuli and also plays a role in controlling heterochromatin formation and recombination. However, its DNA binding independent role is poorly studied. Here, we report that Atf1 has a distinct role in regulating the anaphase-promoting complex/cyclosome (APC/C) ubiquitin ligase. We have identified atf1(+) as a dose-dependent suppressor of apc5-1, a mutation causing mitotic arrest. Remarkably, the suppression is not dependent upon the bZIP domain and is therefore independent of the ability of Atf1 to bind DNA. Interestingly, Atf1 physically binds the APC/C in vivo. Furthermore, we show that addition of purified Atf1 proteins into a cell-free system stimulates ubiquitylation of cyclin B and securin by the APC/C. These results reveal a novel role for Atf1 in cell cycle control through protein-protein interaction.


Asunto(s)
Factor de Transcripción Activador 1/metabolismo , Mitosis/fisiología , Fosfoproteínas/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Factor de Transcripción Activador 1/genética , Ciclosoma-Complejo Promotor de la Anafase , Sistema Libre de Células/metabolismo , Ciclina B/genética , Ciclina B/metabolismo , Heterocromatina/genética , Heterocromatina/metabolismo , Fosfoproteínas/genética , Recombinación Genética/fisiología , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Complejos de Ubiquitina-Proteína Ligasa/genética , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Ubiquitina-Proteína Ligasas/genética
13.
Methods Mol Biol ; 545: 287-300, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19475396

RESUMEN

The anaphase-promoting complex/cyclosome (APC/C), a large (20S) multisubunit E3 ligase, has an essential role to ubiquitylate numerous substrates at specific times during mitosis and G1 phase as well as in meiosis. The deregulation of the APC/C causes cell death or genomic instability, which is a hallmark of cancers. Although 13 years have passed since its discovery, the molecular mechanisms of the APC/C-dependent ubiquitylation and proteolysis are still poorly understood. The development of in vitro systems enables the identification of new substrates and investigation of the molecular mechanisms by which the APC/C recognizes its substrates. This chapter describes in vitro assays reconstituted in Xenopus egg extracts.


Asunto(s)
Óvulo/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/fisiología , Proteínas de Xenopus/fisiología , Ciclosoma-Complejo Promotor de la Anafase , Animales , Proteínas Cdc20 , Proteínas de Ciclo Celular/metabolismo , Extractos Celulares , Femenino , Técnicas In Vitro , Proteínas de Xenopus/metabolismo , Xenopus laevis
14.
Mol Cell ; 32(4): 576-83, 2008 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-19026787

RESUMEN

The Fizzy/Cdc20 family of proteins are essential activators of the anaphase-promoting complex/cyclosome (APC/C), a multisubunit E3 ubiquitin ligase. However, apart from the well-established role of the C-terminal WD40 domain in substrate recognition, the precise roles of the activators remain elusive. Here we show that Nek2A, which directly binds the APC/C, can be ubiquitylated and destroyed in Fizzy/Cdc20-depleted Xenopus egg extracts when only the N-terminal domain of Fizzy/Cdc20 (N-Cdc20) is added. This activity is dependent upon the C box and is conserved in the alternative activator, Fizzy-related/Cdh1. In contrast, canonical substrates such as cyclin B and securin require both the N-terminal and WD40 domains, unless N-Cdc20 is fused to substrates when the WD40 domain becomes dispensable. Furthermore, in Cdc20-depleted cells, N-Cdc20 can facilitate Nek2A destruction in a C box-dependent manner. Our results reveal a role for the N-terminal domain of the Fizzy/Cdc20 family of activators in triggering substrate ubiquitylation by the APC/C.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Proteínas de Xenopus/metabolismo , Ciclosoma-Complejo Promotor de la Anafase , Animales , Proteínas Cdc20 , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Modelos Biológicos , Proteínas Serina-Treonina Quinasas/metabolismo , Estructura Terciaria de Proteína , Proteínas/genética , Especificidad por Sustrato , Ubiquitinación , Xenopus/genética , Xenopus/metabolismo , Proteínas de Xenopus/química , Proteínas de Xenopus/genética
15.
J Cell Sci ; 121(Pt 7): 1107-18, 2008 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-18354085

RESUMEN

Histone acetyltransferases (HATs) and histone deacetylases (HDACs) play important roles in cell regulation, including cell cycle progression, although their precise role in mitotic progression remains elusive. To address this issue, the effects of HDAC inhibition were examined upon a variety of mitotic mutants of the fission yeast Schizosaccharomyces pombe, which contains three HDACs that are sensitive to trichostatin A (TSA) and are similar to human HDACs. Here it is shown that HDACs are implicated in sister chromatid cohesion and separation. A mutant of the cohesin loader Mis4 (adherin) was hypersensitive to TSA and synthetically lethal with HDAC deletion mutations. TSA treatment of mis4 mutant cells decreased chromatin-bound cohesins in the chromosome arm region. By contrast, HDAC inhibitors and clr6 HDAC mutations rescued temperature sensitive (ts) phenotypes of the mutants of the ubiquitin ligase complex anaphase-promoting complex/cyclosome (APC/C), which display metaphase arrest. This suppression coincided with facilitated complex formation of APC/C. Moreover, our mass spectrometry analysis showed that an APC/C subunit, Cut23/APC8, is acetylated. HATs and HDACs might directly target adherin and APC/C to ensure proper chromosome segregation, and anti-tumour effects of HDAC inhibitors could be attributed to this deregulation.


Asunto(s)
Proteínas Fúngicas/metabolismo , Histona Desacetilasas/metabolismo , Schizosaccharomyces/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Ciclosoma-Complejo Promotor de la Anafase , Cromátides/efectos de los fármacos , Cromátides/genética , Inmunoprecipitación de Cromatina , Proteínas Fúngicas/antagonistas & inhibidores , Proteínas Fúngicas/genética , Inhibidores de Histona Desacetilasas , Histona Desacetilasas/genética , Ácidos Hidroxámicos/farmacología , Espectrometría de Masas , Mitosis/efectos de los fármacos , Mitosis/genética , Mutación , Schizosaccharomyces/efectos de los fármacos , Schizosaccharomyces/genética , Intercambio de Cromátides Hermanas/efectos de los fármacos , Complejos de Ubiquitina-Proteína Ligasa/efectos de los fármacos , Complejos de Ubiquitina-Proteína Ligasa/genética
16.
Dev Cell ; 14(3): 446-54, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18331722

RESUMEN

The anaphase-promoting complex/cyclosome (APC/C) is a cell-cycle-regulated essential E3 ubiquitin ligase; however, very little is known about its meiotic regulation. Here we show that fission yeast Mes1 is a substrate of the APC/C as well as an inhibitor, allowing autoregulation of the APC/C in meiosis. Both traits require a functional destruction box (D box) and KEN box. We show that Mes1 directly binds the WD40 domain of the Fizzy family of APC/C activators. Intriguingly, expression of nonubiquitylatable Mes1 blocks cells in metaphase I with high levels of APC/C substrates, suggesting that ubiquitylation of Mes1 is required for partial degradation of cyclin B in meiosis I by alleviating Mes1 inhibitory function. Consistently, a ternary complex, APC/C-Fizzy/Cdc20-Mes1, is stabilized by inhibiting Mes1 ubiquitylation. These results demonstrate that the fine-tuning of the APC/C activity, by a substrate that is also an inhibitor, is required for the precise coordination and transition through meiosis.


Asunto(s)
Meiosis/fisiología , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/citología , Schizosaccharomyces/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Ciclosoma-Complejo Promotor de la Anafase , Animales , Sitios de Unión , Proteínas Cdc20 , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Femenino , Genes Fúngicos , Técnicas In Vitro , Meiosis/genética , Modelos Biológicos , Oocitos/metabolismo , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética , Especificidad por Sustrato , Complejos de Ubiquitina-Proteína Ligasa/genética , Ubiquitinación , Xenopus
18.
Nat Cell Biol ; 8(6): 607-14, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16648845

RESUMEN

The temporal control of mitotic protein degradation remains incompletely understood. In particular, it is unclear why the mitotic checkpoint prevents the anaphase-promoting complex/cyclosome (APC/C)-mediated degradation of cyclin B and securin in early mitosis, but not cyclin A. Here, we show that another APC/C substrate, NIMA-related kinase 2A (Nek2A), is also destroyed in pro-metaphase in a checkpoint-independent manner and that this depends on an exposed carboxy-terminal methionine-arginine (MR) dipeptide tail. Truncation of the Nek2A C terminus delays its degradation until late mitosis, whereas Nek2A C-terminal peptides interfere with APC/C activity in an MR-dependent manner. Most importantly, we show that Nek2A binds directly to the APC/C, also in an MR-dependent manner, even in the absence of the adaptor protein Cdc20. As similar C-terminal dipeptide tails promote direct association of Cdc20, Cdh1 and Apc10-Doc1 with core APC/C subunits, we propose that this sequence also allows a substrate, Nek2A, to directly bind the APC/C. Thus, although Cdc20 is required for the degradation of Nek2A, it is not required for its recruitment and this renders its degradation insensitive to the mitotic checkpoint.


Asunto(s)
Mitosis , Proteínas Serina-Treonina Quinasas/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Proteínas de Xenopus/metabolismo , Ciclosoma-Complejo Promotor de la Anafase , Animales , Proteínas Cdc20 , Proteínas de Ciclo Celular , Células HeLa , Humanos , Xenopus
19.
Dev Cell ; 10(1): 4-5, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16399071

RESUMEN

In the December 22nd issue of Molecular Cell, two groups report refined cryo-electron microscopic structures of the APC/C at approximately 20 A resolution. They also reveal important new features including multiple copies of subunits, dimerization and structural flexibility of the APC/C, which give a hint to solve the mechanisms of the APC/C-dependent ubiquitylation.


Asunto(s)
Poliubiquitina/metabolismo , Estructura Cuaternaria de Proteína , Complejos de Ubiquitina-Proteína Ligasa/química , Ciclosoma-Complejo Promotor de la Anafase , Animales , Humanos , Complejos de Ubiquitina-Proteína Ligasa/genética , Complejos de Ubiquitina-Proteína Ligasa/metabolismo
20.
J Cell Sci ; 117(Pt 11): 2283-93, 2004 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-15126629

RESUMEN

Cold-sensitive dominant mutants scn1 and scn2 of Schizosaccharomyces pombe were isolated by their ability to suppress temperature-sensitive cut9-665 defective in an essential subunit (human Apc6/budding yeast Cdc16 ortholog) of anaphase promoting complex/cyclosome (APC/C). APC/C mutants were defective in metaphase/anaphase transition, whereas single scn mutants showed the delay in anaphase spindle elongation at 20 degrees C. The scn mutants lost viability because of chromosome missegregation, and were sensitive to a tubulin poison. To understand the scn phenotypes, mutant genes were identified. Surprisingly, scn1 and scn2 have the same substitution in the anticodon of two different tRNA-Ala (UGC) genes. UGC was altered to UGU so that the binding of the tRNA-Ala to the ACA Thr codon in mRNA became possible. As cut9-665 contained an Ala535Thr substitution, wild-type Cut9 protein was probably produced in scn mutants. Indeed, plasmid carrying tRNA-Ala (UGU) conferred cold-sensitivity to wild-type and suppressed cut9-665 in a dominant fashion. The previously identified scn1(+) (renamed as scn3(+)) turned out to be a high copy suppressor for scn1 and scn2. These are the first tRNA mutants that cause a mitotic defect.


Asunto(s)
Anticodón/genética , Genes Dominantes/genética , Mitosis/genética , Mutación/genética , ARN de Transferencia de Alanina/genética , Schizosaccharomyces/genética , Supresión Genética/genética , Anafase , División Celular , Núcleo Celular/metabolismo , Supervivencia Celular , Ciclinas/metabolismo , Cicloheximida/farmacología , Fenotipo , Schizosaccharomyces/citología , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Huso Acromático/fisiología , Tiabendazol/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...