Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Blood Adv ; 8(11): 2765-2776, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38531054

RESUMEN

ABSTRACT: Elevated MAPK and the JAK-STAT signaling play pivotal roles in the pathogenesis of chronic neutrophilic leukemia and atypical chronic myeloid leukemia. Although inhibitors targeting these pathways effectively suppress the diseases, they fall short in providing enduring remission, largely attributed to the cytostatic nature of these drugs. Even combinations of these drugs are ineffective in achieving sustained remission. Enhanced MAPK signaling besides promoting proliferation and survival triggers a proapoptotic response. Consequently, malignancies reliant on elevated MAPK signaling use MAPK feedback regulators to intricately modulate the signaling output, prioritizing proliferation and survival while dampening the apoptotic stimuli. Herein, we demonstrate that enhanced MAPK signaling in granulocyte colony-stimulating factor 3 receptor (CSF3R)-driven leukemia upregulates the expression of dual specificity phosphatase 1 (DUSP1) to suppress the apoptotic stimuli crucial for leukemogenesis. Consequently, genetic deletion of Dusp1 in mice conferred synthetic lethality to CSF3R-induced leukemia. Mechanistically, DUSP1 depletion in leukemic context causes activation of JNK1/2 that results in induced expression of BIM and P53 while suppressing the expression of BCL2 that selectively triggers apoptotic response in leukemic cells. Pharmacological inhibition of DUSP1 by BCI (a DUSP1 inhibitor) alone lacked antileukemic activity due to ERK1/2 rebound caused by off-target inhibition of DUSP6. Consequently, a combination of BCI with a MEK inhibitor successfully cured CSF3R-induced leukemia in a preclinical mouse model. Our findings underscore the pivotal role of DUSP1 in leukemic transformation driven by enhanced MAPK signaling and advocate for the development of a selective DUSP1 inhibitor for curative treatment outcomes.


Asunto(s)
Fosfatasa 1 de Especificidad Dual , Sistema de Señalización de MAP Quinasas , Receptores del Factor Estimulante de Colonias , Animales , Ratones , Fosfatasa 1 de Especificidad Dual/metabolismo , Fosfatasa 1 de Especificidad Dual/genética , Humanos , Receptores del Factor Estimulante de Colonias/genética , Receptores del Factor Estimulante de Colonias/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Mutación , Apoptosis , Leucemia/metabolismo , Leucemia/genética , Regulación Leucémica de la Expresión Génica
2.
Leukemia ; 37(8): 1686-1697, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37430058

RESUMEN

Despite significant advances in developing selective JAK2 inhibitors, JAK2 kinase inhibitor (TKI) therapy is ineffective in suppressing the disease. Reactivation of compensatory MEK-ERK and PI3K survival pathways sustained by inflammatory cytokine signaling causes treatment failure. Concomitant inhibition of MAPK pathway and JAK2 signaling showed improved in vivo efficacy compared to JAK2 inhibition alone but lacked clonal selectivity. We hypothesized that cytokine signaling in JAK2V617F induced MPNs increases the apoptotic threshold that causes TKI persistence or refractoriness. Here, we show that JAK2V617F and cytokine signaling converge to induce MAPK negative regulator, DUSP1. Enhanced DUSP1 expression blocks p38 mediated p53 stabilization. Deletion of Dusp1 increases p53 levels in the context of JAK2V617F signaling that causes synthetic lethality to Jak2V617F expressing cells. However, inhibition of Dusp1 by a small molecule inhibitor (BCI) failed to impart Jak2V617F clonal selectivity due to pErk1/2 rebound caused by off-target inhibition of Dusp6. Ectopic expression of Dusp6 and BCI treatment restored clonal selectively and eradicated the Jak2V617F cells. Our study shows that inflammatory cytokines and JAK2V617F signaling converge to induce DUSP1, which downregulates p53 and establishes a higher apoptotic threshold. These data suggest that selectively targeting DUSP1 may provide a curative response in JAK2V617F-driven MPN.


Asunto(s)
Antineoplásicos , Trastornos Mieloproliferativos , Humanos , Retroalimentación , Proteína p53 Supresora de Tumor/metabolismo , Transducción de Señal , Antineoplásicos/uso terapéutico , Citocinas/metabolismo , Janus Quinasa 2/metabolismo , Trastornos Mieloproliferativos/tratamiento farmacológico , Mutación
3.
Blood Adv ; 7(8): 1460-1476, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-36044389

RESUMEN

Despite significant advancements in developing selective FMS-like tyrosine kinase 3 (FLT3) inhibitors, resistance to treatment is common even on continued therapy. Acquisition of on-target mutations or adaptation to MAPK, JAK2, and ABL signaling pathways drive treatment failure and disease relapse. Although combinatorial targeting of all escape routes in preclinical models demonstrated its efficacy, the clinical application is challenging owing to drug-drug interaction and differing pharmacokinetics of the inhibitors. We reasoned that selective polypharmacological targeting could lead to a durable response with reduced toxicity. A cell-based screening was carried out to identify inhibitors targeting FLT3, RAS-MAPK, BCR-ABL, and JAK2 to target the adaptive resistance observed with FLT3 inhibitors. Here, we show that pluripotin is an equipotent inhibitor of FLT3, BCR-ABL, and JAK2 in addition to inhibiting Ras-GAP and extracellular signal-regulated kinase 1 (ERK1). Structural modeling studies revealed that pluripotin is a type II kinase inhibitor that selectively binds with inactive conformations of FLT3, ABL, and JAK2. Pluripotin showed potent inhibitory activity on both mouse and human cells expressing FLT3ITD, including clinically challenging resistant mutations of the gatekeeper residue, F691L. Likewise, pluripotin suppressed the adaptive resistance conferred by the activation of RAS-MAPK pathways, BCR-ABL, and JAK2 signaling. Treatment with pluripotin curbed the progression of acute myeloid leukemia (AML) in multiple in vivo models including patient-derived primary AML cells in mouse xenotransplants. As a proof of concept, we demonstrate that targeted polypharmacological inhibition of key signaling nodes driving adaptive resistance can provide a durable response.


Asunto(s)
Leucemia Mieloide Aguda , Tirosina Quinasa 3 Similar a fms , Humanos , Animales , Ratones , Tirosina Quinasa 3 Similar a fms/genética , Tirosina Quinasa 3 Similar a fms/uso terapéutico , Proteína Quinasa 3 Activada por Mitógenos , Leucemia Mieloide Aguda/genética , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Transducción de Señal , Janus Quinasa 2/genética
4.
Blood Adv ; 6(4): 1186-1192, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-34768286

RESUMEN

Despite the introduction of more selective FLT3 inhibitors to treat FLT3-mutated acute myeloid leukemia (AML), remissions are short lived, and patients show progressive disease after an initial response. Acquisition of resistance-conferring genetic mutations and growth factor signaling are 2 principal mechanisms that drive relapse. FLT3 inhibitors targeting both escape mechanisms could lead to a more profound and lasting clinical response. Here, we show that the JAK2 inhibitor momelotinib is an equipotent type 1 FLT3 inhibitor. Momelotinib showed potent inhibition of FLT3-internal tandem duplication in mouse and human primary cells and effectively suppressed its clinically relevant resistant variants within the activation loop at residues D835, D839, and Y842. Additionally, momelotinib efficiently suppressed the resistance mediated by growth factors and hematopoietic cytokine-activated JAK2 signaling. Consequently, concomitant inhibition of FLT3 and suppression of growth factor signaling by momelotinib treatment showed better efficacy in suppressing leukemia in a preclinical murine model of AML. Altogether, these data provide evidence that momelotinib is an effective type 1 dual JAK2/FLT3 inhibitor and may offer an alternative to gilteritinib. Its ability to impede the resistance conferred by growth factor signaling and activation loop mutants suggests that momelotinib treatment could provide a deeper and durable response and, thus, warrants its clinical evaluation.


Asunto(s)
Leucemia Mieloide Aguda , Animales , Benzamidas , Línea Celular Tumoral , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Ratones , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Pirimidinas/uso terapéutico , Tirosina Quinasa 3 Similar a fms/genética , Tirosina Quinasa 3 Similar a fms/uso terapéutico
5.
Eur J Sport Sci ; 20(6): 819-830, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31495276

RESUMEN

Little is known about the biological mechanisms underlying the beneficial effect of acute exercise on memory or the influence of single nucleotide polymorphisms (SNPs) on this effect. Brain-derived neurotrophic factor (BDNF) is a putative biological mechanism, and while findings from human studies are equivocal, they have neglected to assess how exercise affects individual BDNF isoform (proBDNF, mBDNF) concentrations in serum or the influence of the BDNF val66met SNP on BDNF isoform concentrations. Therefore, the objective of this study was to conduct an exploratory assessment of the effect of acute exercise intensity on memory performance and BDNF isoform concentrations relative to carrier status of the BDNF val66met SNP met allele and to provide guidance for future, fully-powered trials. Memory and BDNF isoform concentrations were assessed in three exercise groups (light intensity, vigorous intensity, and non-exercise) relative to BDNF met carrier status. Analyses revealed that BDNF isoform concentrations and memory were differentially affected by exercise intensity and BDNF met carrier status. Vigorous intensity exercise increased mBDNF, and BDNF met carriers had lower mBDNF concentration. Light intensity exercise improved memory, and over 24 h, memory was worse for BDNF met carriers. Implications from this work will help direct future mechanistic studies of the exercise-memory relationship.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/sangre , Ejercicio Físico/fisiología , Memoria/fisiología , Polimorfismo de Nucleótido Simple , Adolescente , Adulto , Alelos , Factor Neurotrófico Derivado del Encéfalo/genética , Frecuencia Cardíaca , Heterocigoto , Humanos , Masculino , Memoria a Corto Plazo/fisiología , Datos Preliminares , Isoformas de Proteínas/sangre , Isoformas de Proteínas/genética , Precursores de Proteínas/sangre , Precursores de Proteínas/genética , Retención en Psicología , Memoria Espacial/fisiología , Factores de Tiempo , Aprendizaje Verbal/fisiología , Adulto Joven
6.
J Vis Exp ; (143)2019 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-30663656

RESUMEN

The demonstration of tyrosine kinase inhibitors (TKIs) in treating chronic myeloid leukemia (CML) has heralded a new era in cancer therapeutics. However, a small population of cells does not respond to TKI treatment, resulting in minimal residual disease (MRD); even the most potent TKIs fail to eradicate these cells. These MRD cells serve as a reservoir to develop resistance to therapy. Why TKI treatment is ineffective against MRD cells is not known. Growth factor signaling is implicated in supporting the survival of MRD cells during TKI treatment, but a mechanistic understanding is lacking. Recent studies demonstrated that an elevated c-Fos and Dusp1 expression as a result of convergent oncogenic and growth factor signaling in MRD cells mediate TKI resistance. The genetic and chemical inhibition of c-Fos and Dusp1 renders CML exquisitely sensitive to TKIs and cures CML in both genetic and humanized mouse models. We identified these target genes using multiple microarrays from TKI-sensitive and -resistant cells. Here, we provide methods for target validation using in vitro and in vivo mouse models. These methods can easily be applied to any target for genetic validation and therapeutic development.


Asunto(s)
Fosfatasa 1 de Especificidad Dual/genética , Proteínas Proto-Oncogénicas c-fos/genética , Animales , Humanos , Ratones
7.
Oncotarget ; 8(59): 99215-99216, 2017 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-29245892
8.
Nat Med ; 23(4): 472-482, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28319094

RESUMEN

Tyrosine-kinase inhibitor (TKI) therapy for human cancers is not curative, and relapse occurs owing to the continued presence of tumor cells, referred to as minimal residual disease (MRD). The survival of MRD stem or progenitor cells in the absence of oncogenic kinase signaling, a phenomenon referred to as intrinsic resistance, depends on diverse growth factors. Here we report that oncogenic kinase and growth-factor signaling converge to induce the expression of the signaling proteins FBJ osteosarcoma oncogene (c-FOS, encoded by Fos) and dual-specificity phosphatase 1 (DUSP1). Genetic deletion of Fos and Dusp1 suppressed tumor growth in a BCR-ABL fusion protein kinase-induced mouse model of chronic myeloid leukemia (CML). Pharmacological inhibition of c-FOS, DUSP1 and BCR-ABL eradicated MRD in multiple in vivo models, as well as in mice xenotransplanted with patient-derived primary CML cells. Growth-factor signaling also conferred TKI resistance and induced FOS and DUSP1 expression in tumor cells modeling other types of kinase-driven leukemias. Our data demonstrate that c-FOS and DUSP1 expression levels determine the threshold of TKI efficacy, such that growth-factor-induced expression of c-FOS and DUSP1 confers intrinsic resistance to TKI therapy in a wide-ranging set of leukemias, and might represent a unifying Achilles' heel of kinase-driven cancers.


Asunto(s)
Resistencia a Antineoplásicos/genética , Fosfatasa 1 de Especificidad Dual/genética , Genes abl/genética , Mesilato de Imatinib/farmacología , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-fos/genética , Adulto , Animales , Apoptosis/efectos de los fármacos , Western Blotting , Proliferación Celular/efectos de los fármacos , Femenino , Citometría de Flujo , Perfilación de la Expresión Génica , Humanos , Mesilato de Imatinib/uso terapéutico , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Persona de Mediana Edad , Trasplante de Neoplasias , Neoplasia Residual , Neoplasias Experimentales/genética , Inhibidores de Proteínas Quinasas/uso terapéutico , Reacción en Cadena en Tiempo Real de la Polimerasa , Ensayo de Tumor de Célula Madre
9.
Sci Rep ; 5: 14538, 2015 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-26419724

RESUMEN

Emergence of genetic resistance against kinase inhibitors poses a great challenge for durable therapeutic response. Here, we report a novel mechanism of JAK2 kinase inhibition by fedratinib (TG101348) that prevents emergence of genetic resistance. Using in vitro drug screening, we identified 211 amino-acid substitutions conferring resistance to ruxolitinib (INCB018424) and cross-resistance to the JAK2 inhibitors AZD1480, CYT-387 and lestaurtinib. In contrast, these resistant variants were fully sensitive to fedratinib. Structural modeling, coupled with mutagenesis and biochemical studies, revealed dual binding sites for fedratinib. In vitro binding assays using purified proteins showed strong affinity for the substrate-binding site (Kd = 20 nM) while affinity for the ATP site was poor (Kd = ~8 µM). Our studies demonstrate that mutations affecting the substrate-binding pocket encode a catalytically incompetent kinase, thereby preventing emergence of resistant variants. Most importantly, our data suggest that in order to develop resistance-free kinase inhibitors, the next-generation drug design should target the substrate-binding site.


Asunto(s)
Sitios de Unión , Dominio Catalítico , Resistencia a Medicamentos/genética , Janus Quinasa 2/química , Janus Quinasa 2/genética , Inhibidores de Proteínas Quinasas/química , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Regulación Alostérica , Sustitución de Aminoácidos , Codón , Resistencia a Múltiples Medicamentos/genética , Humanos , Janus Quinasa 2/antagonistas & inhibidores , Janus Quinasa 2/metabolismo , Modelos Moleculares , Conformación Molecular , Mutagénesis Sitio-Dirigida , Mutación , Nitrilos , Dominios y Motivos de Interacción de Proteínas/genética , Inhibidores de Proteínas Quinasas/farmacología , Pirazoles/química , Pirazoles/farmacología , Pirimidinas , Pirrolidinas/química , Pirrolidinas/farmacología , Especificidad por Sustrato , Sulfonamidas/química , Sulfonamidas/farmacología
10.
J Vis Exp ; (94)2014 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-25549138

RESUMEN

The discovery of BCR/ABL as a driver oncogene in chronic myeloid leukemia (CML) resulted in the development of Imatinib, which, in fact, demonstrated the potential of targeting the kinase in cancers by effectively treating the CML patients. This observation revolutionized drug development to target the oncogenic kinases implicated in various other malignancies, such as, EGFR, B-RAF, KIT and PDGFRs. However, one major drawback of anti-kinase therapies is the emergence of drug resistance mutations rendering the target to have reduced or lost affinity for the drug. Understanding the mechanisms employed by resistant variants not only helps in developing the next generation inhibitors but also gives impetus to clinical management using personalized medicine. We reported a retroviral vector based screening strategy to identify the spectrum of resistance conferring mutations in BCR/ABL, which has helped in developing the next generation BCR/ABL inhibitors. Using Ruxolitinib and JAK2 as a drug target pair, here we describe in vitro screening methods that utilizes the mouse BAF3 cells expressing the random mutation library of JAK2 kinase.


Asunto(s)
Análisis Mutacional de ADN/métodos , Resistencia a Antineoplásicos/genética , Pruebas Genéticas/métodos , Inhibidores de Proteínas Quinasas/farmacología , Animales , Proteínas de Fusión bcr-abl/genética , Humanos , Mesilato de Imatinib/farmacología , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Ratones , Mutación , Nitrilos , Pirazoles/farmacología , Pirimidinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA