Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Hum Genet ; 143(8): 965-978, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39028335

RESUMEN

ARID1B is the most frequently mutated gene in Coffin-Siris syndrome (CSS). To date, the vast majority of causative variants reported in ARID1B are truncating, leading to nonsense-mediated mRNA decay. In the absence of experimental data, only few ARID1B amino acid substitutions have been classified as pathogenic, mainly based on clinical data and their de novo occurrence, while most others are currently interpreted as variants of unknown significance. The present study substantiates the pathogenesis of ARID1B non-truncating/NMD-escaping variants located in the SMARCA4-interacting EHD2 and DNA-binding ARID domains. Overexpression assays in cell lines revealed that the majority of EHD2 variants lead to protein misfolding and formation of cytoplasmic aggresomes surrounded by vimentin cage-like structures and co-localizing with the microtubule organisation center. ARID domain variants exhibited not only aggresomes, but also nuclear aggregates, demonstrating robust pathological effects. Protein levels were not compromised, as shown by quantitative western blot analysis. In silico structural analysis predicted the exposure of amylogenic segments in both domains due to the nearby variants, likely causing this aggregation. Genome-wide transcriptome and methylation analysis in affected individuals revealed expression and methylome patterns consistent with those of the pathogenic haploinsufficiency ARID1B alterations in CSS cases. These results further support pathogenicity and indicate two approaches for disambiguation of such variants in everyday practice. The few affected individuals harbouring EHD2 non-truncating variants described to date exhibit mild CSS clinical traits. In summary, this study paves the way for the re-evaluation of previously unclear ARID1B non-truncating variants and opens a new era in CSS genetic diagnosis.


Asunto(s)
Proteínas de Unión al ADN , Cara , Deformidades Congénitas de la Mano , Discapacidad Intelectual , Micrognatismo , Cuello , Factores de Transcripción , Humanos , Discapacidad Intelectual/genética , Micrognatismo/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Deformidades Congénitas de la Mano/genética , Cuello/anomalías , Cara/anomalías , Anomalías Múltiples/genética , Mutación , Masculino , Agregado de Proteínas
2.
NPJ Precis Oncol ; 8(1): 59, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38429350

RESUMEN

There are no therapeutic predictive biomarkers or representative preclinical models for high-grade gastroenteropancreatic neuroendocrine neoplasms (GEP-NEN), a highly aggressive, fatal, and heterogeneous malignancy. We established patient-derived (PD) tumoroids from biobanked tissue samples of advanced high-grade GEP-NEN patients and applied this model for targeted rapid ex vivo pharmacotyping, next-generation sequencing, and perturbational profiling. We used tissue-matched PD tumoroids to profile individual patients, compared ex vivo drug response to patients' clinical response to chemotherapy, and investigated treatment-induced adaptive stress responses.PD tumoroids recapitulated biological key features of high-grade GEP-NEN and mimicked clinical response to cisplatin and temozolomide ex vivo. When we investigated treatment-induced adaptive stress responses in PD tumoroids in silico, we discovered and functionally validated Lysine demethylase 5 A and interferon-beta, which act synergistically in combination with cisplatin. Since ex vivo drug response in PD tumoroids matched clinical patient responses to standard-of-care chemotherapeutics for GEP-NEN, our rapid and functional precision oncology approach could expand personalized therapeutic options for patients with advanced high-grade GEP-NEN.

3.
Endocr Pathol ; 35(2): 147-153, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38403790

RESUMEN

Traditionally considered non-functional low proliferative benign neuroendocrine proliferations measuring less than 5 mm, pancreatic (neuro)endocrine microadenomas are now classified as pancreatic neuroendocrine microtumors in the 2022 WHO classification of endocrine and neuroendocrine tumors. This case report discussed the features of an incidentally identified 4.7-mm glucagon-expressing pancreatic neuroendocrine microtumor with MEN1 mutation only, chromosomally stable and an epigenetic alpha-like phenotype. The tumor was associated with an unexplained increased proliferation rate in Ki-67 of 15%. There was no associated DAXX/ATRX deficiency. The presented case challenges the conventional thought of a low proliferative disease of the so-called "pancreatic neuroendocrine microadenomas" and provides additional support to the 2022 WHO classification that also requires grading of these neoplasms. Despite exhibiting molecular features of less aggressive behavior, the case also underscores the biological complexity of pancreatic neuroendocrine microtumors. By recognizing the heterogenous spectrum of neuroendocrine neoplasms, the current case also contributes to ongoing discussions on how to optimize the clinical management of such tumors.


Asunto(s)
Tumores Neuroendocrinos , Neoplasias Pancreáticas , Humanos , Persona de Mediana Edad , Proliferación Celular , Clasificación del Tumor , Tumores Neuroendocrinos/patología , Tumores Neuroendocrinos/genética , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogénicas/genética
4.
J Am Chem Soc ; 146(8): 5305-5315, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38325811

RESUMEN

The reversible condensation of catechols and boronic acids to boronate esters is a paradigm reaction in dynamic covalent chemistry. However, facile backward hydrolysis is detrimental for stability and has so far prevented applications for boronate-based materials. Here, we introduce cubic boronate ester cages 6 derived from hexahydroxy tribenzotriquinacenes and phenylene diboronic acids with ortho-t-butyl substituents. Due to steric shielding, dynamic exchange at the Lewis acidic boron sites is feasible only under acid or base catalysis but fully prevented at neutral conditions. For the first time, boronate ester cages 6 tolerate substantial amounts of water or alcohols both in solution and solid state. The unprecedented applicability of these materials under ambient and aqueous conditions is showcased by efficient encapsulation and on-demand release of ß-carotene dyes and heterogeneous water oxidation catalysis after the encapsulation of ruthenium catalysts.

5.
Cell Rep ; 42(12): 113529, 2023 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-38060380

RESUMEN

Chaperone-mediated autophagy (CMA) and endosomal microautophagy (eMI) are pathways for selective degradation of cytosolic proteins in lysosomes and late endosomes, respectively. These autophagic processes share as a first step the recognition of the same five-amino-acid motif in substrate proteins by the Hsc70 chaperone, raising the possibility of coordinated activity of both pathways. In this work, we show the existence of a compensatory relationship between CMA and eMI and identify a role for the chaperone protein Bag6 in triage and internalization of eMI substrates into late endosomes. Association and dynamics of Bag6 at the late endosome membrane change during starvation, a stressor that, contrary to other autophagic pathways, causes a decline in eMI activity. Collectively, these results show a coordinated function of eMI with CMA, identify the interchangeable subproteome degraded by these pathways, and start to elucidate the molecular mechanisms that facilitate the switch between them.


Asunto(s)
Autofagia Mediada por Chaperones , Microautofagia , Autofagia , Endosomas/metabolismo , Lisosomas/metabolismo , Chaperonas Moleculares/metabolismo
6.
J Crohns Colitis ; 17(11): 1817-1832, 2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-37208197

RESUMEN

BACKGROUND AND AIMS: The anti-MAdCAM-1 antibody ontamalimab demonstrated efficacy in a phase II trial in ulcerative colitis and results of early terminated phase III trials are pending, but its precise mechanisms of action are still unclear. Thus, we explored the mechanisms of action of ontamalimab and compared it to the anti-α4ß7 antibody vedolizumab. METHODS: We studied MAdCAM-1 expression with RNA sequencing and immunohistochemistry. The mechanisms of action of ontamalimab were assessed with fluorescence microscopy, dynamic adhesion and rolling assays. We performed in vivo cell trafficking studies in mice and compared ontamalimab and vedolizumab surrogate [-s] antibodies in experimental models of colitis and wound healing. We analysed immune cell infiltration under anti-MAdCAM-1 and anti-α4ß7 treatment by single-cell transcriptomics and studied compensatory trafficking pathways. RESULTS: MAdCAM-1 expression was increased in active inflammatory bowel disease. Binding of ontamalimab to MAdCAM-1 induced the internalization of the complex. Functionally, ontamalimab blocked T cell adhesion similar to vedolizumab, but also inhibited L-selectin-dependent rolling of innate and adaptive immune cells. Despite conserved mechanisms in mice, the impact of ontamalimab-s and vedolizumab-s on experimental colitis and wound healing was similar. Single-cell RNA sequencing demonstrated enrichment of ontamalimab-s-treated lamina propria cells in specific clusters, and in vitro experiments indicated that redundant adhesion pathways are active in these cells. CONCLUSIONS: Ontamalimab has unique and broader mechanisms of action compared to vedolizumab. However, this seems to be compensated for by redundant cell trafficking circuits and leads to similar preclinical efficacy of anti-α4ß7 and anti-MAdCAM-1 treatment. These results will be important for the interpretation of pending phase III data.


Asunto(s)
Colitis Ulcerosa , Enfermedades Inflamatorias del Intestino , Animales , Ratones , Fármacos Gastrointestinales/farmacología , Fármacos Gastrointestinales/uso terapéutico , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Anticuerpos Monoclonales Humanizados/farmacología , Anticuerpos Monoclonales Humanizados/uso terapéutico , Colitis Ulcerosa/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Integrinas
7.
Cereb Cortex ; 33(3): 844-864, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-35296883

RESUMEN

Alcohol use, abuse, and addiction, and resulting health hazards are highly sex-dependent with unknown mechanisms. Previously, strong links between the SMPD3 gene and its coded protein neutral sphingomyelinase 2 (NSM) and alcohol abuse, emotional behavior, and bone defects were discovered and multiple mechanisms were identified for females. Here we report strong sex-dimorphisms for central, but not for peripheral mechanisms of NSM action in mouse models. Reduced NSM activity resulted in enhanced alcohol consumption in males, but delayed conditioned rewarding effects. It enhanced the acute dopamine response to alcohol, but decreased monoaminergic systems adaptations to chronic alcohol. Reduced NSM activity increased depression- and anxiety-like behavior, but was not involved in alcohol use for the self-management of the emotional state. Constitutively reduced NSM activity impaired structural development in the brain and enhanced lipidomic sensitivity to chronic alcohol. While the central effects were mostly opposite to NSM function in females, similar roles in bone-mediated osteocalcin release and its effects on alcohol drinking and emotional behavior were observed. These findings support the view that the NSM and multiple downstream mechanism may be a source of the sex-differences in alcohol use and emotional behavior.


Asunto(s)
Emociones , Esfingomielina Fosfodiesterasa , Masculino , Ratones , Animales , Femenino , Esfingomielina Fosfodiesterasa/genética , Esfingomielina Fosfodiesterasa/metabolismo , Consumo de Bebidas Alcohólicas , Ansiedad/metabolismo , Encéfalo/metabolismo , Etanol
8.
Arthritis Rheumatol ; 75(4): 517-532, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36245290

RESUMEN

OBJECTIVE: We have recently shown that priming of synovial fibroblasts (SFs) drives arthritis flares. Pathogenic priming of SFs is essentially mediated by epigenetic reprogramming. Bromodomain and extraterminal motif (BET) proteins translate epigenetic changes into transcription. Here, we used a BET inhibitor (I-BET151) to target inflammatory tissue priming and to reduce flare severity in a murine experimental arthritis model. METHODS: BALB/c mice were treated by intraperitoneal injection or by local injection in the paw with I-BET151, which blocks the interaction of BET proteins with acetylated histones. We assessed the effects of I-BET151 on acute arthritis and/or inflammatory tissue priming in a model of repeated injections of monosodium urate crystals or zymosan into the mouse paw. I-BET151 was given before arthritis induction, at peak inflammation, or after healing of the first arthritis bout. We performed transcriptomic (RNA-Seq), epigenomic (ATAC-Seq), and functional (invasion, cytokine production, migration, senescence, metabolic flux) analyses of murine and human SFs treated with I-BET151 in vitro or in vivo. RESULTS: Systemic I-BET151 administration did not affect acute inflammation but abolished inflammatory tissue priming and diminished flare severity in both preventive and therapeutic treatment settings. I-BET151 was also effective when applied locally in the joint. BET inhibition also inhibited osteoclast differentiation, while macrophage activation in the joint was not affected. Flare reduction after BET inhibition was mediated, at least in part, by rolling back the primed transcriptional, metabolic, and pathogenic phenotype of SFs. CONCLUSION: Inflammatory tissue priming is dependent on transcriptional regulation by BET proteins, making them promising therapeutic targets for prevention of arthritis flares in previously affected joints.


Asunto(s)
Artritis , Proteínas Nucleares , Ratones , Humanos , Animales , Proteínas Nucleares/genética , Factores de Transcripción/genética , Brote de los Síntomas , Artritis/tratamiento farmacológico , Inflamación
9.
Int J Mol Sci ; 23(22)2022 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-36430692

RESUMEN

Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS). Although immune modulation and suppression are effective during relapsing-remitting MS, secondary progressive MS (SPMS) requires neuroregenerative therapeutic options that act on the CNS. The sphingosine-1-phosphate receptor modulator siponimod is the only approved drug for SPMS. In the pivotal trial, siponimod reduced disease progression and brain atrophy compared with placebo. The enteric nervous system (ENS) was recently identified as an additional autoimmune target in MS. We investigated the effects of siponimod on the ENS and CNS in the experimental autoimmune encephalomyelitis model of MS. Mice with late-stage disease were treated with siponimod, fingolimod, or sham. The clinical disease was monitored daily, and treatment success was verified using mass spectrometry and flow cytometry, which revealed peripheral lymphopenia in siponimod- and fingolimod-treated mice. We evaluated the mRNA expression, ultrastructure, and histopathology of the ENS and CNS. Single-cell RNA sequencing revealed an upregulation of proinflammatory genes in spinal cord astrocytes and ependymal cells in siponimod-treated mice. However, differences in CNS and ENS histopathology and ultrastructural pathology between the treatment groups were absent. Thus, our data suggest that siponimod and fingolimod act on the peripheral immune system and do not have pronounced direct neuroprotective effects.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Ratones , Animales , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Clorhidrato de Fingolimod/farmacología , Clorhidrato de Fingolimod/uso terapéutico , Compuestos de Bencilo/farmacología , Sistema Nervioso Central/patología , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/patología
10.
Elife ; 112022 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-35950748

RESUMEN

Th2 cells provide effector functions in type 2 immune responses to helminths and allergens. Despite knowledge about molecular mechanisms of Th2 cell differentiation, there is little information on Th2 cell heterogeneity and clonal distribution between organs. To address this, we performed combined single-cell transcriptome and T-cell receptor (TCR) clonotype analysis on murine Th2 cells in mesenteric lymph nodes (MLNs) and lung after infection with Nippostrongylus brasiliensis (Nb) as a human hookworm infection model. We find organ-specific expression profiles, but also populations with conserved migration or effector/resident memory signatures that unexpectedly cluster with potentially regulatory Il10posFoxp3neg cells. A substantial MLN subpopulation with an interferon response signature suggests a role for interferon signaling in Th2 differentiation or diversification. Further RNA-inferred developmental directions indicate proliferation as a hub for differentiation decisions. Although the TCR repertoire is highly heterogeneous, we identified expanded clones and CDR3 motifs. Clonal relatedness between distant organs confirmed effective exchange of Th2 effector cells, although locally expanded clones dominated the response. We further cloned an Nb-specific TCR from an expanded clone in the lung effector cluster and describe surface markers that distinguish transcriptionally defined clusters. These results provide insights in Th2 cell subset diversity and clonal relatedness in distant organs.


Asunto(s)
Nippostrongylus , Células Th2 , Animales , Células Cultivadas , Humanos , Interferones , Ratones , Receptores de Antígenos de Linfocitos T/genética
11.
Brain Sci ; 12(4)2022 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-35448007

RESUMEN

Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system (CNS). Therapy is currently limited to drugs that interfere with the immune system; treatment options that primarily mediate neuroprotection and prevent neurodegeneration are not available. Here, we studied the effects of nimodipine on the rat cell line OLN-93, which resembles young mature oligodendrocytes. Nimodipine is a dihydropyridine that blocks the voltage-gated L-type calcium channel family members Cav1.2 and Cav1.3. Our data show that the treatment of OLN-93 cells with nimodipine induced the upregulation of myelin genes, in particular of proteolipid protein 1 (Plp1), which was confirmed by a significantly greater expression of PLP1 in immunofluorescence analysis and the presence of myelin structures in the cytoplasm at the ultrastructural level. Whole-genome RNA sequencing additionally revealed the upregulation of genes that are involved in neuroprotection, remyelination, and antioxidation pathways. Interestingly, the observed effects were independent of Cav1.2 and Cav1.3 because OLN-93 cells do not express these channels, and there was no measurable response pattern in patch-clamp analysis. Taking into consideration previous studies that demonstrated a beneficial effect of nimodipine on microglia, our data support the notion that nimodipine is an interesting drug candidate for the treatment of MS and other demyelinating diseases.

12.
PLoS Biol ; 20(2): e3001550, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35120120

RESUMEN

[This corrects the article DOI: 10.1371/journal.pbio.3000301.].

13.
J Invest Dermatol ; 142(8): 2149-2158.e10, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-34973310

RESUMEN

Generalized pustular psoriasis is a severe psoriatic subtype characterized by epidermal neutrophil infiltration. Although variants in IL36RN and MPO have been shown to affect immune cells, a systematic analysis of neutrophils and PBMC subsets and their differential gene expression dependent on MPO genotypes was not performed yet. We assessed the transcriptomes of MPO-deficient patients using single-cell RNA sequencing of PBMCs and RNA sequencing of neutrophils in a stable disease state. Cell-type annotation by multimodal reference mapping of single-cell RNA-sequencing data was verified by flow cytometry of surface and intracellular markers; the proportions of CD4+ cytotoxic T lymphocytes and other CD4+ effector cells were increased in generalized pustular psoriasis, whereas the frequencies of naïve CD4+ T cells were significantly lower. The expression of FGFBP2 marking CD4+ cytotoxic T lymphocytes and CD8+ effector memory T cells was elevated in patients with generalized pustular psoriasis with disease-contributing variants compared with that in noncarriers (P = 0.0015). In neutrophils, differentially expressed genes were significantly enriched in genes of the classical complement activation pathway. Future studies assessing affected cell types and pathways will show their contribution to generalized pustular psoriasis's pathogenesis and indicate whether findings can be transferred to the acute epidermal situation and whether depletion or inactivation of CD4+ cytotoxic T lymphocytes may be a reasonable therapeutic approach.


Asunto(s)
Peroxidasa , Psoriasis , Enfermedades Cutáneas Vesiculoampollosas , Transcriptoma , Enfermedad Aguda , Linfocitos T CD4-Positivos/patología , Enfermedad Crónica , Humanos , Leucocitos Mononucleares/patología , Peroxidasa/deficiencia , Psoriasis/patología , Enfermedades Cutáneas Vesiculoampollosas/patología , Linfocitos T Citotóxicos
14.
Glia ; 70(3): 522-535, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34787332

RESUMEN

Recently, oligodendrocytes (Ol) have been attributed potential immunomodulatory effects. Yet, the exact mode of interaction with pathogenic CNS infiltrating lymphocytes remains unclear. Here, we attempt to dissect mechanisms of Ol modulation during neuroinflammation and characterize the interaction of Ol with pathogenic T cells. RNA expression analysis revealed an upregulation of immune-modulatory genes and adhesion molecules (AMs), ICAM-1 and VCAM-1, in Ol when isolated from mice undergoing experimental autoimmune encephalomyelitis (EAE). To explore whether AMs are involved in the interaction of Ol with infiltrating T cells, we performed co-culture studies on mature Ol and Th1 cells. Live cell imaging analysis showed direct interaction between both cell types. Eighty percentage of Th1 cells created contacts with Ol that lasted longer than 15 min, which may be regarded as physiologically relevant. Exposure of Ol to Th1 cells or their supernatant resulted in a significant extension of Ol processes, and upregulation of AMs as well as other immunomodulatory genes. Our observations indicate that blocking of oligodendroglial ICAM-1 can reduce the number of Th1 cells initially contacting the Ol. These results suggest that AMs may play a role in the interaction between Ol and Th1 cells. We identified Ol interacting with CD4+ cells in vivo in spinal cord tissue of EAE diseased mice indicating that our in vitro findings are of interest to further scientific research in this field. Further characterization and understanding of Ol interaction with infiltrating cells may lead to new therapeutic strategies enhancing Ol protection and remyelination potential. Oligodendrocytes regulate immune modulatory genes and adhesion molecules during autoimmune neuroinflammation Oligodendrocytes interact with Th1 cells in vitro in a physiologically relevant manner Adhesion molecules may be involved in Ol-Th1 cell interaction.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Molécula 1 de Adhesión Intercelular/metabolismo , Animales , Encefalomielitis Autoinmune Experimental/patología , Molécula 1 de Adhesión Intercelular/genética , Ratones , Ratones Endogámicos C57BL , Enfermedades Neuroinflamatorias , Oligodendroglía/metabolismo
15.
Physiol Genomics ; 53(12): 509-517, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34704838

RESUMEN

Preterm neonates are at a high risk for nephron loss under adverse clinical conditions. Renal damage potentially collides with postnatal nephrogenesis. Recent animal studies suggest that nephron loss within this vulnerable phase leads to renal damage later in life. Nephrogenic pathways are commonly reactivated after kidney injury supporting renal regeneration. We hypothesized that nephron loss during nephrogenesis affects renal development, which, in turn, impairs tissue repair after secondary injury. Neonates prior to 36 wk of gestation show an active nephrogenesis. In rats, nephrogenesis is ongoing until day 10 after birth. Mimicking the situation of severe nephron loss during nephrogenesis, male pups were uninephrectomized at day 1 of life (UNXd1). A second group of males was uninephrectomized at postnatal day 14 (UNXd14), after terminated nephrogenesis. Age-matched controls were sham operated. Three days after uninephrectomy transcriptional changes in the right kidney were analyzed by RNA-sequencing, followed by functional pathway analysis. In UNXd1, 1,182 genes were differentially regulated, but only 143 genes showed a regulation both in UNXd1 and UNXd14. The functional groups "renal development" and "kidney injury" were among the most differentially regulated groups and revealed distinctive alterations. Reduced expression of candidate genes concerning renal development (Bmp7, Gdnf, Pdgf-B, Wt1) and injury (nephrin, podocin, Tgf-ß1) were detected. The downregulation of Bmp7 and Gdnf persisted until day 28. In UNXd14, Six2 was upregulated and Pax2 was downregulated. We conclude that nephron loss during nephrogenesis affects renal development and induces a specific regulation of genes that might hinder tissue repair after secondary kidney injury.


Asunto(s)
Lesión Renal Aguda/genética , Regulación hacia Abajo/genética , Regulación del Desarrollo de la Expresión Génica , Genes del Desarrollo , Nefronas/crecimiento & desarrollo , Nefronas/patología , Organogénesis/genética , Regulación hacia Arriba/genética , Animales , Animales Recién Nacidos/cirugía , Proteína Morfogenética Ósea 7/genética , Estudios de Casos y Controles , Modelos Animales de Enfermedad , Factor Neurotrófico Derivado de la Línea Celular Glial/genética , Proteínas de Homeodominio/genética , Masculino , Nefrectomía/métodos , Factor de Transcripción PAX2/genética , RNA-Seq/métodos , Ratas , Ratas Wistar , Transcriptoma/genética
16.
Immunity ; 54(11): 2531-2546.e5, 2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34644537

RESUMEN

Alternatively activated macrophages (AAMs) contribute to the resolution of inflammation and tissue repair. However, molecular pathways that govern their differentiation have remained incompletely understood. Here, we show that uncoupling protein-2-mediated mitochondrial reprogramming and the transcription factor GATA3 specifically controlled the differentiation of pro-resolving AAMs in response to the alarmin IL-33. In macrophages, IL-33 sequentially triggered early expression of pro-inflammatory genes and subsequent differentiation into AAMs. Global analysis of underlying signaling events revealed that IL-33 induced a rapid metabolic rewiring of macrophages that involved uncoupling of the respiratory chain and increased production of the metabolite itaconate, which subsequently triggered a GATA3-mediated AAM polarization. Conditional deletion of GATA3 in mononuclear phagocytes accordingly abrogated IL-33-induced differentiation of AAMs and tissue repair upon muscle injury. Our data thus identify an IL-4-independent and GATA3-dependent pathway in mononuclear phagocytes that results from mitochondrial rewiring and controls macrophage plasticity and the resolution of inflammation.


Asunto(s)
Metabolismo Energético , Inflamación/inmunología , Inflamación/metabolismo , Interleucina-33/metabolismo , Activación de Macrófagos/inmunología , Macrófagos/inmunología , Macrófagos/metabolismo , Biomarcadores , Diferenciación Celular/genética , Diferenciación Celular/inmunología , Inflamación/etiología , Activación de Macrófagos/genética , Mitocondrias/genética , Mitocondrias/inmunología , Mitocondrias/metabolismo , Fagocitos , Transducción de Señal
17.
Mol Psychiatry ; 26(12): 7403-7416, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34584229

RESUMEN

Mental disorders are highly comorbid and occur together with physical diseases, which are often considered to arise from separate pathogenic pathways. We observed in alcohol-dependent patients increased serum activity of neutral sphingomyelinase. A genetic association analysis in 456,693 volunteers found associations of haplotypes of SMPD3 coding for NSM-2 (NSM) with alcohol consumption, but also with affective state, and bone mineralisation. Functional analysis in mice showed that NSM controls alcohol consumption, affective behaviour, and their interaction by regulating hippocampal volume, cortical connectivity, and monoaminergic responses. Furthermore, NSM controlled bone-brain communication by enhancing osteocalcin signalling, which can independently supress alcohol consumption and reduce depressive behaviour. Altogether, we identified a single gene source for multiple pathways originating in the brain and bone, which interlink disorders of a mental-physical co-morbidity trias of alcohol abuse-depression/anxiety-bone disorder. Targeting NSM and osteocalcin signalling may, thus, provide a new systems approach in the treatment of a mental-physical co-morbidity trias.


Asunto(s)
Alcoholismo , Enfermedades Óseas , Trastorno Depresivo Mayor , Esfingomielina Fosfodiesterasa , Alcoholismo/genética , Animales , Enfermedades Óseas/genética , Comorbilidad , Trastorno Depresivo Mayor/genética , Humanos , Ratones , Morbilidad , Esfingomielina Fosfodiesterasa/genética
18.
J Mol Med (Berl) ; 99(12): 1727-1740, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34528115

RESUMEN

In malignant hypertension, far more severe kidney injury occurs than in the "benign" form of the disease. The role of high blood pressure and the renin-angiotensin-aldosterone system is well recognized, but the pathogenesis of the renal injury of malignant hypertension (MH) remains incompletely understood. Using the rat model of two-kidney, one-clip renovascular hypertension in which some but not all animals develop MH, we performed a transcriptomic analysis of gene expression by RNA sequencing to identify transcriptional changes in the kidney cortex specific for MH. Differential gene expression was assessed in three groups: MH, non-malignant hypertension (NMH), and normotensive, sham-operated controls. To distinguish MH from NMH, we considered two factors: weight loss and typical renovascular lesions. Mean blood pressure measured intraarterially was elevated in MH (220 ± 6.5 mmHg) as well as in NMH (192 ± 6.4 mmHg), compared to controls (119 ± 1.7 mmHg, p < 0.05). Eight hundred eighty-six genes were exclusively regulated in MH only. Principal component analysis revealed a separated clustering of the three groups. The data pointed to an upregulation of many inflammatory mechanisms in MH including pathways which previously attracted relatively little attention in the setting of hypertensive kidney injury: Transcripts from all three complement activation pathways were upregulated in MH compared to NMH but not in NMH compared with controls; immunohistochemistry confirmed complement deposition in MH exclusively. The expression of chemokines attracting neutrophil granulocytes (CXCL6) and infiltration of myeloperoxidase-positive cells were increased only in MH rats. The data suggest that these pathways, especially complement deposition, may contribute to kidney injury under MH. KEY MESSAGES: The most severe hypertension-induced kidney injury occurs in malignant hypertension. In a rat model of malignant hypertension, we assessed transcriptional responses in the kidney exposed to high blood pressure. A broad stimulation of inflammatory mechanisms was observed, but a few specific pathways were activated only in the malignant form of the disease, notably activation of the complement cascades. Complement inhibitors may alleviate the thrombotic microangiopathy of malignant hypertension even in the absence of primary complement abnormalities.


Asunto(s)
Hipertensión Maligna/genética , Hipertensión Renovascular/genética , Animales , Proteínas del Sistema Complemento/metabolismo , Hipertensión Maligna/metabolismo , Hipertensión Renovascular/metabolismo , Riñón/metabolismo , Masculino , Ratas Sprague-Dawley , Análisis de Secuencia de ARN
19.
Development ; 148(14)2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34184026

RESUMEN

Transcription factor 4 (TCF4) is a crucial regulator of neurodevelopment and has been linked to the pathogenesis of autism, intellectual disability and schizophrenia. As a class I bHLH transcription factor (TF), it is assumed that TCF4 exerts its neurodevelopmental functions through dimerization with proneural class II bHLH TFs. Here, we aim to identify TF partners of TCF4 in the control of interhemispheric connectivity formation. Using a new bioinformatic strategy integrating TF expression levels and regulon activities from single cell RNA-sequencing data, we find evidence that TCF4 interacts with non-bHLH TFs and modulates their transcriptional activity in Satb2+ intercortical projection neurons. Notably, this network comprises regulators linked to the pathogenesis of neurodevelopmental disorders, e.g. FOXG1, SOX11 and BRG1. In support of the functional interaction of TCF4 with non-bHLH TFs, we find that TCF4 and SOX11 biochemically interact and cooperatively control commissure formation in vivo, and regulate the transcription of genes implicated in this process. In addition to identifying new candidate interactors of TCF4 in neurodevelopment, this study illustrates how scRNA-Seq data can be leveraged to predict TF networks in neurodevelopmental processes.


Asunto(s)
ARN Citoplasmático Pequeño/metabolismo , Análisis de la Célula Individual , Factor de Transcripción 4/genética , Factor de Transcripción 4/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diferenciación Celular , ADN Helicasas , Embrión de Mamíferos , Factores de Transcripción Forkhead , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Discapacidad Intelectual , Proteínas de Unión a la Región de Fijación a la Matriz , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso , Neuronas/fisiología , Proteínas Nucleares , Dominios y Motivos de Interacción de Proteínas , ARN Citoplasmático Pequeño/genética , Factores de Transcripción SOXC , Esquizofrenia/genética , Esquizofrenia/metabolismo
20.
Immunity ; 54(5): 1002-1021.e10, 2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33761330

RESUMEN

Arthritis typically involves recurrence and progressive worsening at specific predilection sites, but the checkpoints between remission and persistence remain unknown. Here, we defined the molecular and cellular mechanisms of this inflammation-mediated tissue priming. Re-exposure to inflammatory stimuli caused aggravated arthritis in rodent models. Tissue priming developed locally and independently of adaptive immunity. Repeatedly stimulated primed synovial fibroblasts (SFs) exhibited enhanced metabolic activity inducing functional changes with intensified migration, invasiveness and osteoclastogenesis. Meanwhile, human SF from patients with established arthritis displayed a similar primed phenotype. Transcriptomic and epigenomic analyses as well as genetic and pharmacological targeting demonstrated that inflammatory tissue priming relies on intracellular complement C3- and C3a receptor-activation and downstream mammalian target of rapamycin- and hypoxia-inducible factor 1α-mediated metabolic SF invigoration that prevents activation-induced senescence, enhances NLRP3 inflammasome activity, and in consequence sensitizes tissue for inflammation. Our study suggests possibilities for therapeutic intervention abrogating tissue priming without immunosuppression.


Asunto(s)
Proteínas del Sistema Complemento/inmunología , Fibroblastos/inmunología , Inflamación/inmunología , Membrana Sinovial/inmunología , Inmunidad Adaptativa/inmunología , Animales , Artritis Reumatoide/inmunología , Línea Celular , Perros , Humanos , Mediadores de Inflamación/inmunología , Células de Riñón Canino Madin Darby , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones SCID , Ratas Wistar , Transducción de Señal/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA