Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Eur J Biochem ; 251(3): 885-92, 1998 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-9490064

RESUMEN

The endoglucanase I (EGI) and the cellobiohydrolase I (CBHI) of the filamentous fungus Trichoderma reesei form a homologous pair of cellulolytic enzymes which nevertheless have different modes of action. We show here that the action of CBHI on bacterial microcrystalline cellulose results in efficient solubilisation but only a slow decrease in its degree of polymerisation. In contrast, the action of EGI results in a rapid decrease of the degree of polymerisation but less efficient overall solubilisation of the substrate. CBHI alone was practically inactive toward cotton which has a high initial degree of polymerisation and a complex morphology. EGI rapidly reduced the degree of polymerisation of cotton, and slowly solubilised part of it. Working synergistically, EGI and CBHI solubilised cotton more rapidly and to a greater extent than EGI alone. Our data are consistent with the exoglucanase nature of CBHI and also provide some evidence supporting its processive mode of action.


Asunto(s)
Celulasa/metabolismo , Celulosa/metabolismo , Trichoderma/enzimología , Bacterias , Sitios de Unión , Celulasa/aislamiento & purificación , Celulosa 1,4-beta-Celobiosidasa , Cromatografía por Intercambio Iónico , Cristalización , Gossypium , Especificidad por Sustrato
2.
Appl Environ Microbiol ; 62(8): 2883-7, 1996 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16535380

RESUMEN

Degradation of cotton cellulose by Trichoderma reesei endoglucanase I (EGI) and cellobiohydrolase II (CBHII) was investigated by analyzing the insoluble cellulose fragments remaining after enzymatic hydrolysis. Changes in the molecular-size distribution of cellulose after attack by EGI, alone and in combination with CBHII, were determined by size exclusion chromatography of the tricarbanilate derivatives. Cotton cellulose incubated with EGI exhibited a single major peak, which with time shifted to progressively lower degrees of polymerization (DP; number of glucosyl residues per cellulose chain). In the later stages of degradation (8 days), this peak was eventually centered over a DP of 200 to 300 and was accompanied by a second peak (DP, (apprx=)15); a final weight loss of 34% was observed. Although CBHII solubilized approximately 40% of bacterial microcrystalline cellulose, the cellobiohydrolase did not depolymerize or significantly hydrolyze native cotton cellulose. Furthermore, molecular-size distributions of cellulose incubated with EGI together with CBHII did not differ from those attacked solely by EGI. However, a synergistic effect was observed in the reducing-sugar production by the cellulase mixture. From these results we conclude that EGI of T. reesei degrades cotton cellulose by selectively cleaving through the microfibrils at the amorphous sites, whereas CBHII releases soluble sugars from the EGI-degraded cotton cellulose and from the more crystalline bacterial microcrystalline cellulose.

3.
Appl Environ Microbiol ; 61(3): 872-6, 1995 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-7793921

RESUMEN

Laccase activity in the lignin-degrading fungus Ceriporiopsis subvermispora was associated with several proteins in the broth of cultures grown in a defined medium. Activity was not increased significantly by adding 2,5-xylidine or supplemental copper to the medium. Higher activity, associated with two major isoenzymes, developed in cultures grown on a wheat bran medium. These two isoenzymes were purified to homogeneity. L1 and L2 had isoelectric points of 3.4 and 4.8, molecular masses of 71 and 68 kDa, and approximate carbohydrate contents of 15 and 10%, respectively. Data indicated 4 copper atoms per mol. L1 and L2 had overlapping pH optima in the range of 3 to 5, depending on the substrate, and exhibited half-lives of 120 and 50 min at 60 degrees C. They were strongly inhibited by sodium azide and thioglycolic acid but not by hydroxylamine or EDTA. The isoenzymes oxidized 1,2,4,5-tetramethoxybenzene but not other methoxybenzene congeners. A variety of usual laccase substrates, including lignin-related phenols and ABTS [2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid)], were also oxidized. Kinetic parameters were similar to those of the laccases of Coriolus versicolor. The N-terminal amino acid sequence (20 residues for L1) showed significant homology to those of laccases of other white rot basidiomycetes but not to those of the laccases of Agaricus bisporus or Neurospora crassa.


Asunto(s)
Lignina/metabolismo , Oxidorreductasas/metabolismo , Polyporaceae/enzimología , Secuencia de Aminoácidos , Biodegradación Ambiental , Cobre/análisis , Concentración de Iones de Hidrógeno , Punto Isoeléctrico , Cinética , Lacasa , Datos de Secuencia Molecular , Oxidorreductasas/química , Oxidorreductasas/aislamiento & purificación , Especificidad por Sustrato , Temperatura
4.
Biochem J ; 302 ( Pt 2): 463-9, 1994 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-8092998

RESUMEN

Specific patterns of attacks of cotton, bacterial cellulose and bacterial microcrystalline cellulose (BMCC) by recombinant cellulases of Cellulomonas fimi were investigated. Molecular-size distributions of the celluloses were determined by high-performance size-exclusion chromatography. Chromatography of cotton and bacterial celluloses revealed single major peaks centered over progressively lower molecular-mass positions during attack by endoglucanase CenA. In advanced stages, a second peak appeared at very low average size (approx. 11 glucosyl units); ultimate weight losses were approximately 30%. The isolated catalytic domain of CenA, p30, gave results very similar to those with complete CenA. CenA did not effectively depolymerize or solubilize BMCC significantly. Molecular-size distributions of cotton and bacterial cellulose incubated with endoglucanases CenB or CenD exhibited one major peak regardless of incubation time; low-molecular-mass fragments did not accumulate. Weight losses were 40 and 35% respectively. The single peak shifted to lower-molecular-mass positions as incubation continued, but high-molecular-mass material persisted. CenB and CenD readily attacked and solubilized BMCC (approx. 70%). We conclude that CenA attacks cellulose by preferentially cleaving completely through the cellulose microfibrils at the amorphous sites, and much more slowly by degrading the crystalline surfaces. Conversely, CenB and CenD cleave the amorphous regions much less efficiently while vigorously degrading the surfaces of the crystalline regions of the microfibrils.


Asunto(s)
Celulasa/metabolismo , Celulosa/metabolismo , Bacilos Grampositivos Asporogénicos/enzimología , Celulasa/química , Celulosa/química , Peso Molecular , Distribución Normal , Tamaño de la Partícula , Proteínas Recombinantes/metabolismo
5.
Appl Environ Microbiol ; 60(8): 2839-45, 1994 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16349351

RESUMEN

Three extracellular cellulose-depolymerizing enzymes from cotton undergoing decay by the brown rot fungus Meruliporia (Serpula) incrassata were isolated by anion-exchange and hydrophobic interaction chromatographies. Depolymerization was detected by analyzing the changes in the molecular size distribution of cotton cellulose by high-performance size-exclusion chromatography. The average degree of polymerization (DP; number of glucosyl residues per cellulose chain) was calculated from the size-exclusion chromatography data. The very acidic purified endoglucanases, Cel 25, Cel 49, and Cel 57, were glycosylated and had molecular weights of 25,200, 48,500, and 57,100, respectively. Two, Cel 25 and Cel 49, depolymerized cotton cellulose and were also very active on carboxymethyl cellulose (CMC). Cel 57, by contrast, significantly depolymerized cotton cellulose but did not release reducing sugars from CMC and only very slightly reduced the viscosity of CMC solutions. Molecular size distributions of cotton cellulose attacked by the three endoglucanases revealed single major peaks that shifted to lower DP positions. A second smaller peak (DP, 10 to 20) was also observed in the size-exclusion chromatograms of cotton attacked by Cel 49 and Cel 57. Under the reaction conditions used, Cel 25, the most active of the cellulases, reduced the weight average DP from 3,438 to 315, solubilizing approximately 20% of the cellulose. The weight average DP values of cotton attacked under the same conditions by Cel 49 and Cel 57 were 814 and 534; weight losses were 9 and 11% respectively.

6.
Appl Environ Microbiol ; 60(2): 709-14, 1994 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16349197

RESUMEN

Veratryl alcohol (VA) is a secondary metabolite of white-rot fungi that produce the ligninolytic enzyme lignin peroxidase. VA stabilizes lignin peroxidase, promotes the ability of this enzyme to oxidize a variety of physiological substrates, and is accordingly thought to play a significant role in fungal ligninolysis. Pulse-labeling and isotope-trapping experiments have now clarified the pathway for VA biosynthesis in the white-rot basidiomycete Phanerochaete chrysosporium. The pulse-labeling data, obtained with C-labeled phenylalanine, cinnamic acid, benzoic acid, and benzaldehyde, showed that radiocarbon labeling followed a reproducible sequence: it peaked first in cinnamate, then in benzoate and benzaldehyde, and finally in VA. Phenylalanine, cinnamate, benzoate, and benzaldehyde were all efficient precursors of VA in vivo. The isotope-trapping experiments showed that exogenous, unlabeled benzoate and benzaldehyde were effective traps of phenylalanine-derived C. These results support a pathway in which VA biosynthesis proceeds as follows: phenylalanine --> cinnamate --> benzoate and/or benzaldehyde --> VA.

7.
Appl Environ Microbiol ; 59(6): 1792-7, 1993 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16348955

RESUMEN

The ability of the white rot fungus Ceriporiopsis subvermispora to mineralize C-synthetic lignin was studied under different culture conditions, and the levels of two extracellular enzymes were monitored. The highest mineralization rates (28% after 28 days) were obtained in cultures containing a growth-limiting amount of nitrogen source (1.0 mM ammonium tartrate); under this condition, the levels of manganese peroxidase (MnP) and laccase present in the culture supernatant solutions were very low compared with cultures containing 10 mM of the nitrogen source. In contrast, cultures containing a limiting concentration of the carbon source (0.1% glucose) showed low levels of both enzymes and also very low mineralization rates compared with cultures containing 1% glucose. Cultures containing 11 ppm of Mn(II) showed a higher rate of mineralization than those containing 0.3 or 40 ppm of this cation. Levels of MnP and laccase were higher when 40 ppm of Mn(II) was used. Mineralization rates were slightly higher in cultures flushed daily with oxygen, whereas laccase levels were lower and MnP levels were approximately the same as in cultures maintained under an air atmosphere. The presence of 0.4 mM veratryl alcohol reduced both mineralization rates and MnP levels, without affecting laccase levels. Lignin peroxidase activity was not detected under any condition. Addition of purified lignin peroxidase to the cultures in the presence or absence of veratryl alcohol did not enhance mineralization rates significantly.

8.
Appl Environ Microbiol ; 58(4): 1266-70, 1992 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16348694

RESUMEN

The kinetics of cotton cellulose depolymerization by the brown rot fungus Postia placenta and the white rot fungus Phanerochaete chrysosporium were investigated with solid-state cultures. The degree of polymerization (DP; the average number of glucosyl residues per cellulose molecule) of cellulose removed from soil-block cultures during degradation by P. placenta was first determined viscosimetrically. Changes in molecular size distribution of cellulose attacked by either fungus were then determined by size exclusion chromatography as the tricarbanilate derivative. The first study with P. placenta revealed two phases of depolymerization: a rapid decrease to a DP of approximately 800 and then a slower decrease to a DP of approximately 250. Almost all depolymerization occurred before weight loss. Determination of the molecular size distribution of cellulose during attack by the brown rot fungus revealed single major peaks centered over progressively lower DPs. Cellulose attacked by P. chrysosporium was continuously consumed and showed a different pattern of change in molecular size distribution than cellulose attacked by P. placenta. At first, a broad peak which shifted at a slightly lower average DP appeared, but as attack progressed the peak narrowed and the average DP increased slightly. From these results, it is apparent that the mechanism of cellulose degradation differs fundamentally between brown and white rot fungi, as represented by the species studied here. We conclude that the brown rot fungus cleaved completely through the amorphous regions of the cellulose microfibrils, whereas the white rot fungus attacked the surfaces of the microfibrils, resulting in a progressive erosion.

9.
Appl Environ Microbiol ; 57(12): 3652-5, 1991 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-1785937

RESUMEN

The ability of selected bacterial strains and consortia to mineralize degradation intermediates produced by Phanerochaete chrysosporium from 14C-labeled synthetic lignins was studied. Three different molecular weight fractions of the intermediates were subjected to the action of the bacteria, which had been grown on a lignin-related dimeric compound. Two consortia isolated from wood being decayed naturally by a Ganoderma species of white rot fungus (the palo podrido system) mineralized 10 to 11% of the fraction with a molecular weight of approximately 500 but less than 4% of the higher- and lower-molecular-weight fractions. The consortia mineralized 5 to 9% of the original lignins. The ability of two pseudomonads isolated earlier from lignin-rich environments to mineralize the original lignins or fungus degradation products was much lower.


Asunto(s)
Bacterias/metabolismo , Basidiomycota/metabolismo , Lignina/metabolismo , Minerales/metabolismo , Biodegradación Ambiental , Dióxido de Carbono/metabolismo , Cinética , Lignina/síntesis química
10.
Proc Natl Acad Sci U S A ; 88(16): 6956-60, 1991 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-11607206

RESUMEN

Lignin peroxidase shares several structural features with the well-studied horseradish peroxidase and cytochrome c peroxidase but carries a higher redox potential. Here the heme domain of lignin peroxidase and the lignin peroxidase cyanide adduct was examined by 1HNMR spectroscopy, including nuclear Overhauser effect and two-dimensional measurements, and the findings were compared with those for horseradish peroxidase and cytochrome c peroxidase. Structural information was obtained on the orientation of the heme vinyl and propionate groups and the proximal and distal histidines. The shifts of the epsilon1 proton of the proximal histidine were found to be empirically related to the Fe3+/Fe2+ redox potentials.

11.
Arch Biochem Biophys ; 288(1): 145-8, 1991 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-1898012

RESUMEN

Manganese peroxidase, produced by some white-rot fungi during lignin degradation, catalyzes the oxidation of Mn2+ to Mn3+. Whereas Mn3+ is known to oxidize phenolic compounds, its role in lignin degradation is not clear. We have used a series of methoxybenzenes with E1/2 values of 1.76-0.81 V (vs saturated calomel electrode) to investigate the oxidizing ability of Mn3+ chelates generated chemically and enzymatically. Although lignin peroxidase has been shown to oxidize high potential congeners, our results show that manganese peroxidase, or physiological concentrations of Mn3+, oxidize only the lower potential congeners. In addition, Mn3+ increased the rate of decay of the cation radical of 1,2,4,5-tetramethoxybenzene. The kinetics of decay continued to be first order, so Mn3+ does not oxidize the cation radical itself, but probably oxidizes a neutral dienyl radical derived from the cation radical. This indicates a possible role for Mn3+ in lignin degradation, as neutral dienyl radicals are proposed to be products of lignin peroxidase action.


Asunto(s)
Anisoles/metabolismo , Peroxidasas/metabolismo , Basidiomycota/enzimología , Biodegradación Ambiental , Cinética , Lignina/metabolismo , Manganeso/metabolismo , Manganeso/farmacología , Oxidación-Reducción
12.
Appl Environ Microbiol ; 57(5): 1453-60, 1991 May.
Artículo en Inglés | MEDLINE | ID: mdl-1854201

RESUMEN

The specific enzymes associated with lignin degradation in solid lignocellulosic substrates have not been identified. Therefore, we examined extracts of cultures of Phanerochaete chrysosporium that were degrading a mechanical pulp of aspen wood. Western blot (immunoblot) analyses of the partially purified protein revealed lignin peroxidase, manganese-dependent peroxidase (MnP), and glyoxal oxidase. The dominant peroxidase, an isoenzyme of MnP (pI 4.9), was isolated, and its N-terminal amino acid sequence and amino acid composition were determined. The results reveal both similarities to and differences from the deduced amino acid sequences from cDNA clones of dominant MnP isoenzymes from liquid cultures. Our results suggest, therefore, that the ligninolytic-enzyme-encoding genes that are expressed during solid substrate degradation differ from those expressed in liquid culture or are allelic variants of their liquid culture counterparts. In addition to lignin peroxidase, MnP, and glyoxal oxidase, xylanase and protease activities were present in the extracts of the degrading pulp.


Asunto(s)
Basidiomycota/enzimología , Proteínas Fúngicas/aislamiento & purificación , Lignina/metabolismo , Peroxidasas/aislamiento & purificación , Madera , Oxidorreductasas de Alcohol/aislamiento & purificación , Oxidorreductasas de Alcohol/ultraestructura , Secuencia de Aminoácidos , Basidiomycota/metabolismo , Biodegradación Ambiental , Western Blotting , Cromatografía por Intercambio Iónico , Proteínas Fúngicas/ultraestructura , Cinética , Datos de Secuencia Molecular , Peroxidasas/metabolismo , Peroxidasas/ultraestructura
13.
Biochemistry ; 29(46): 10475-80, 1990 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-2176868

RESUMEN

Veratryl alcohol (3,4-dimethoxybenzyl alcohol) appears to have multiple roles in lignin degradation by Phanerochaete chrysosporium. It is synthesized de novo by the fungus. It apparently induces expression of lignin peroxidase (LiP), and it protects LiP from inactivation by H2O2. In addition, veratryl alcohol has been shown to potentiate LiP oxidation of compounds that are not good LiP substrates. We have now observed the formation of Mn3+ in reaction mixtures containing LiP, Mn2+, veratryl alcohol, malonate buffer, H2O2, and O2. No Mn3+ was formed if veratryl alcohol or H2O2 was omitted. Mn3+ formation also showed an absolute requirement for oxygen, and oxygen consumption was observed in the reactions. This suggests involvement of active oxygen species. In experiments using oxalate (a metabolite of P. chrysosporium) instead of malonate, similar results were obtained. However, in this case, we detected (by ESR spin-trapping) the production of carbon dioxide anion radical (CO2.-) and perhydroxyl radical (.OOH) in reaction mixtures containing LiP, oxalate, veratryl alcohol, H2O2, and O2. Our data indicate the formation of oxalate radical, which decays to CO2 and CO2.-. The latter reacts with O2 to form O2.-, which then oxidizes Mn2+ to Mn3+. No radicals were detected in the absence of veratryl alcohol. These results indicate that LiP can indirectly oxidize Mn2+ and that veratryl alcohol is probably a radical mediator in this system.


Asunto(s)
Alcoholes Bencílicos/metabolismo , Magnesio/metabolismo , Peroxidasas/metabolismo , Basidiomycota/enzimología , Espectroscopía de Resonancia por Spin del Electrón , Radicales Libres , Cinética , Malonatos/metabolismo , Oxalatos/metabolismo , Ácido Oxálico , Oxidación-Reducción , Consumo de Oxígeno
14.
Appl Environ Microbiol ; 56(11): 3519-26, 1990 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16348355

RESUMEN

This research measured mycelial extension rates of selected strains of Phanerochaete chrysorhiza, Phanerochaete laevis, Phanerochaete sanguinea, Phanerochaete filamentosa, Phanerochaete sordida, Inonotus circinatus, and Phanerochaete chrysosporium and the ability of these organisms to tolerate and degrade the wood preservative pentachlorophenol (PCP) in an aqueous medium and in soil. Most of the tested species had mycelial extension rates in the range of P. sordida > P. laevis > P. chrysorhiza = P. sanguinea > I. circinatus = P. filamentosa. There were also significant intraspecific differences in mycelial extension rates. For example, mycelial extension rates among strains of P. sordida ranged from 1.78 to 4.81 cm day. Phanerochaete spp. were very sensitive to PCP. Growth of several species was prevented by the presence of 5 ppm (5 mug/g) PCP. However, P. chrysosporium and P. sordida grew at 25 ppm PCP, albeit at greatly decreased mycelial extension rates. In an aqueous medium, mineralization of PCP by P. sordida 13 (ca. 12% after 30 days) was significantly greater than that by all other tested P. sordida strains and P. chrysosporium. After 64 days, the level of PCP had decreased by 96 and 82% in soil inoculated with P. chrysosporium and P. sordida, respectively. Depletion of PCP by these fungi occurred in a two-stage process. The first stage was characterized by a rapid depletion of PCP that coincided with an accumulation of pentachloroanisole (PCA). At the end of the first stage, ca. 64 and 71% of the PCP was converted to PCA in P. chrysosporium and P. sordida cultures, respectively. In the second stage, levels of PCP and PCA were reduced by 9.6 and 18%, respectively, in soil inoculated with P. chrysosporium and by 3 and 23%, respectively, in soil inoculated with P. sordida. PCA was mineralized by both P. chrysosporium and P. sordida in an aqueous medium.

15.
Biochem J ; 268(2): 475-80, 1990 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-2163614

RESUMEN

Lignin peroxidase oxidizes non-phenolic substrates by one electron to give aryl-cation-radical intermediates, which react further to give a variety of products. The present study investigated the possibility that other peroxidative and oxidative enzymes known to catalyse one-electron oxidations may also oxidize non-phenolics to cation-radical intermediates and that this ability is related to the redox potential of the substrate. Lignin peroxidase from the fungus Phanerochaete chrysosporium, horseradish peroxidase (HRP) and laccase from the fungus Trametes versicolor were chosen for investigation with methoxybenzenes as a homologous series of substrates. The twelve methoxybenzene congeners have known half-wave potentials that differ by as much as approximately 1 V. Lignin peroxidase oxidized the ten with the lowest half-wave potentials, whereas HRP oxidized the four lowest and laccase oxidized only 1,2,4,5-tetramethoxybenzene, the lowest. E.s.r. spectroscopy showed that this congener is oxidized to its cation radical by all three enzymes. Oxidation in each case gave the same products: 2,5-dimethoxy-p-benzoquinone and 4,5-dimethoxy-o-benzoquinone, in a 4:1 ratio, plus 2 mol of methanol for each 1 mol of substrate. Using HRP-catalysed oxidation, we showed that the quinone oxygen atoms are derived from water. We conclude that the three enzymes affect their substrates similarly, and that whether an aromatic compound is a substrate depends in large part on its redox potential. Furthermore, oxidized lignin peroxidase is clearly a stronger oxidant than oxidized HRP or laccase. Determination of the enzyme kinetic parameters for the methoxybenzene oxidations demonstrated further differences among the enzymes.


Asunto(s)
Derivados del Benceno/metabolismo , Chrysosporium/enzimología , Peroxidasa de Rábano Silvestre/metabolismo , Hongos Mitospóricos/enzimología , Oxidorreductasas/metabolismo , Peroxidasas/metabolismo , Espectroscopía de Resonancia por Spin del Electrón , Concentración de Iones de Hidrógeno , Cinética , Lacasa , Espectrofotometría Ultravioleta
16.
Biochimie ; 70(6): 847-52, 1988 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-2844307

RESUMEN

Phanerochete chrysosporium ligninase (+ H2O2) oxidized the lignin substructure-related compound acetosyringone to a phenoxy radical which was identified by ESR spectroscopy. Cellobiose:quinone oxidoreductase (CBQase) + cellobiose, previously suggested to be a phenoxy radical reducing system, was without effect on the radical. Ligninase polymerized guaiacol and it increased the molecular size of a synthetic lignin. These polymerizations, reflecting phenoxy radical coupling reactions, were also unaffected by the CBQase system. We conclude that ligninase catalyzes phenol polymerization via phenoxy radicals, which CBQase does not affect. The CBQase system also did not produce H2O2, and its physiological role remains obscure. Glucose oxidase + glucose did produce H2O2 as expected, but, like CBQase, it did not reduce the phenoxy radical of acetosyringone. Because intact cultures of P. chrysosporium depolymerize lignins, it is likely that phenol polymerization by ligninase is prevented or reversed in vivo by an as yet undescribed system.


Asunto(s)
Deshidrogenasas de Carbohidratos/farmacología , Oxigenasas/farmacología , Polímeros , Basidiomycota/enzimología , Cromatografía en Gel , Espectroscopía de Resonancia por Spin del Electrón , Radicales Libres , Guayacol/metabolismo , Lignina , Oxidación-Reducción
17.
Appl Environ Microbiol ; 53(11): 2605-9, 1987 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16347479

RESUMEN

A natural bacterial isolate that we have classified as Pseudomonas acidovorans grows on the lignin model compounds 1-(3,4-dimethoxyphenyl)-2-(2-methoxyphenoxy)propane-1,3-diol (compound 1) and 1-(4-hydroxy-3-methoxyphenyl)-2-(2-methoxyphenoxy)propane-1,3-diol (compound 1'), as well as on the corresponding 1-oxo compounds (2 and 2') as sole sources of carbon and energy. Metabolic intermediates present in cultures growing on compound 1 included compound 2, 2-methoxyphenol (guaiacol [compound 3]), beta-hydroxypro-pioveratrone (compound 4), acetoveratrone (compound 5), and veratric acid (compound 6). Also identified were compounds 1', 2', beta-hydroxypropiovanillone (compound 4'), and acetovanillone (compound 5'), indicating that 4-O demethylation also occurs. The phenolic intermediates were the same as those found in cultures growing on compound 1'. Compounds 2 and 2' were in part also reduced to compounds 1 and 1', respectively. Compound 3 was shown to be derived from the 2-methoxyphenoxy moiety. A suggested degradation scheme is as follows: compound 1-->2-->(3 + 4)-->5-->6 (and similarly for 1'). In this scheme, the key reaction is cleavage of the ether linkage between C-2 (C(beta)) of the phenylpropane moiety and the 2-methoxyphenoxy moiety in compounds 2 and 2' (i.e., beta-aryl ether cleavage). On the basis of compounds identified, viz., 3 and 4 (4'), cleavage appears formally to be reductive. Because this is unlikely, the initial cleavage products probably were not detected. The implications of these results for the enzyme(s) responsible are discussed.

18.
Appl Environ Microbiol ; 53(9): 2242-6, 1987 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16347444

RESUMEN

The purpose of this study was to examine the relationship between the molecular size of lignin in several preparations and extent of degradation (mineralization) by Xanthomonas sp. strain 99. The influence of ligninase pretreatment was also examined. Five synthetic lignins and one C-methylated spruce lignin were used. The extent of mineralization to CO(2) was greatest for the samples containing the most low-molecular-weight material, and the low-molecular-weight portions were preferentially (or perhaps solely) degraded. Pretreatment of the five synthetic lignins with crude ligninase increased their molecular size and decreased their degradability by the xanthomonad. Pretreatment of the methylated spruce lignin with crude ligninase caused both polymerization and depolymerization but resulted in a net decrease in bacterial degradability. Our results suggest that the xanthomonad can degrade lignins only up to a molecular weight of 600 to 1,000.

19.
J Bacteriol ; 169(5): 2195-201, 1987 May.
Artículo en Inglés | MEDLINE | ID: mdl-3553159

RESUMEN

The importance of extracellular H2O2 in lignin degradation has become increasingly apparent with the recent discovery of H2O2-requiring ligninases produced by white-rot fungi. Here we describe a new H2O2-producing activity of Phanerochaete chrysosporium that involves extracellular oxidases able to use simple aldehyde, alpha-hydroxycarbonyl, or alpha-dicarbonyl compounds as substrates. The activity is expressed during secondary metabolism, when the ligninases are also expressed. Analytical isoelectric focusing of the extracellular proteins, followed by activity staining, indicated that minor proteins with broad substrate specificities are responsible for the oxidase activity. Two of the oxidase substrates, glyoxal and methylglyoxal, were also identified, as their quinoxaline derivatives, in the culture fluid as secondary metabolites. The significance of these findings is discussed with respect to lignin degradation and other proposed systems for H2O2 production in P. chrysosporium.


Asunto(s)
Oxidorreductasas de Alcohol/metabolismo , Aldehídos/metabolismo , Basidiomycota/enzimología , Glioxal/metabolismo , Peróxido de Hidrógeno/metabolismo , Oxidorreductasas/metabolismo , Biodegradación Ambiental , Espacio Extracelular/enzimología , Concentración de Iones de Hidrógeno , Focalización Isoeléctrica , Cinética , Lignina/metabolismo , Oxidación-Reducción , Especificidad por Sustrato
20.
Appl Environ Microbiol ; 53(2): 242-5, 1987 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16347273

RESUMEN

The purpose of this investigation was to test a potential strategy for the ligninase-dependent selection of lignin-degrading microorganisms. The strategy involves covalently bonding amino acids to lignin model compounds in such a way that ligninase-catalyzed cleavage of the models releases the amino acids for growth nitrogen. Here we describe the synthesis of glycine-N-2-(3,4-dimethoxyphenyl)ethane-2-ol (I) and demonstrate that growth (as measured by mycelial nitrogen content) of the known lignin-degrading basidiomycete Phanerochaete chrysosporium Burds. with compound I as the nitrogen source depends on its production of ligninase. Ligninase is shown to catalyze the oxidative C-C cleavage of compound I, releasing glycine, formaldehyde, and veratraldehyde at a 1:1:1 stoichiometry. P. chrysosporium utilizes compound I as a nitrogen source, but only after the cultures enter secondary metabolism (day 3 of growth), at which time the ligninase and the other components of the ligninolytic system (lignin --> CO(2)) are expressed. Compound I and related adducts have potential not only in the isolation of lignin-degrading microbes but, perhaps of equal importance, in strain improvement.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...