Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Insects ; 15(1)2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38249075

RESUMEN

Naturally durable wood pre-dates preservative-treated wood and has been demonstrated to offer a suitable service life for certain applications where preservative-treated wood is not feasible. Heartwood extractives have been demonstrated to impart bio-deteriorative resistance to naturally durable wood species. These extractives are typically found in the heartwood of living trees and are produced either by the death of parenchyma cells or as the result of external stimuli. The mechanisms of natural durability are not well understood, as heartwood extractives can be extremely variable in their distribution, composition, and efficacy in both living and harvested trees. The underlying complexity of heartwood extractives has hindered their standardization in residential building codes for use as wood preservatives. The use of naturally durable lumber is not always feasible, as woods with exceptionally durable heartwood do not typically yield lumber with acceptable machining properties. A potential approach to overcome the inherent difficulty in establishing guidelines for the appropriate use of naturally durable wood is to focus solely on the extractives as a source of bioactive protectants based on the strategies used on living and dead wood to repel the agents of biodeterioration. This critical review summarizes the relevant literature on naturally durable woods, their extractives, and their potential use as bio-inspired wood protectants. An additional discussion will be aimed at underscoring the past difficulties in adopting this approach and how to overcome the future hurdles.

2.
Plant Methods ; 18(1): 51, 2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35443731

RESUMEN

BACKGROUND: Illegal logging is a global crisis with significant environmental, economic, and social consequences. Efforts to combat it call for forensic methods to determine species identity, provenance, and individual identification of wood specimens throughout the forest products supply chain. DNA-based methodologies are the only tools with the potential to answer all three questions and the only ones that can be calibrated "non-destructively" by using leaves or other plant tissue and take advantage of publicly available DNA sequence databases. Despite the potential that DNA-based methods represent for wood forensics, low DNA yield from wood remains a limiting factor because, when compared to other plant tissues, wood has few living DNA-containing cells at functional maturity, it often has PCR-inhibiting extractives, and industrial processing of wood degrades DNA. To overcome these limitations, we developed a technique-organellar microcapture-to mechanically isolate intact nuclei and plastids from wood for subsequent DNA extraction, amplification, and sequencing. RESULTS: Here we demonstrate organellar microcapture wherein we remove individual nuclei from parenchyma cells in wood (fresh and aged) and leaves of Carya ovata and Tilia americana, amyloplasts from Carya wood, and chloroplasts from kale (Brassica sp.) leaf midribs. ITS (773 bp), ITS1 (350 bp), ITS2 (450 bp), and rbcL (620 bp) were amplified via polymerase chain reaction, sequenced, and heuristic searches against the NCBI database were used to confirm that recovered DNA corresponded to each taxon. CONCLUSION: Organellar microcapture, while too labor-intensive for routine extraction of many specimens, successfully recovered intact nuclei from wood samples collected more than sixty-five years ago, plastids from fresh sapwood and leaves, and presents great potential for DNA extraction from recalcitrant plant samples such as tissues rich in secondary metabolites, old specimens (archaeological, herbarium, and xylarium specimens), or trace evidence previously considered too small for analysis.

3.
PLoS One ; 17(1): e0263073, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35085335

RESUMEN

Copper is a common component in wood preservatives and is used to protect the wood against fungal degradation. Previous research has shown that the Cu++ oxidation state provides the best wood protection, and Cu++ is widely believed to be the oxidation state of most copper within treated wood. A recent study using X-ray absorption near edge spectroscopy (XANES) reported high amounts of Cu+ in wood that had been in contact with corroded fasteners. This study uses XANES to examine the copper oxidation states in wood treated with several different wood preservatives as a function of time after treatment. In contrast with previous literature which focused on the fixation reaction in the first few hours after treatment, this paper examines the oxidation state of Cu in treated wood at longer times (up to 1-year) after treatment. The results showed in nearly all cases, Cu was in the Cu++ oxidation state to within the measurement uncertainty. Cu XANES patterns taken approximately 1-year after treatment showed no discernable differences between preservative systems, indicating that regardless of the starting treatment the final Cu speciation is the same within one year. The results confirm previously held beliefs about the Cu oxidation states in wood and give further insights into the corrosion mechanism of metals embedded in treated wood.


Asunto(s)
Cobre/química , Madera/química , Espectroscopía de Absorción de Rayos X , Oxidación-Reducción
4.
Chemosphere ; 286(Pt 1): 131629, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34375193

RESUMEN

The aim of this study was to evaluate the efficacy of biological and chemical remediation of chromated copper arsenate (CCA) treated Corymbia citriodora poles, removed from service after 30 years. The presence of arsenic (As), chromium (Cr) and copper (Cu) was quantified by inductively coupled plasma optical emission spectrometry (ICP-OES). Twelve species of decay fungi were used for the biological remediation assay. For chemical remediation oxalic, citric, maleic and ethylenediamine tetraacetic (EDTA) acids were used for 24 and 48 h. In biological remediation, copper-tolerant brown-rot fungi, Wolfiporia cocos, Antrodia xantha and Fibroporia radiculosa, performed the best results, with the highest removals for As (59-85 %) and Cr (38-61 %). Cu was the most easily extracted, with removals above 60 % among the tested fungi, with the best results (90-98 %) for F. radiculosa, Coniophora puteana, Antrodia vaillantii and Postia placenta. In chemical remediation, the extraction time of 48 h was the most effective, and oxalic acid generally reached the highest removals. The EDTA + oxalic acid combination reached the highest value for Cu extraction (98 %).


Asunto(s)
Arseniatos , Madera , Basidiomycota , Cobre , Polyporales
5.
Insects ; 12(9)2021 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-34564242

RESUMEN

Heartwood extracts of naturally durable wood species are often evaluated as alternatives to chemical wood preservatives, but field data from long-term performance testing are lacking. The current study evaluated the long-term (five-year) performance of two non-durable wood species treated with heartwood extracts of either Tectona grandis, Dalbergia sissoo, Cedrus deodara, or Pinus roxburghii alone or combined with linseed oil. Stakes (45.7 × 1.9 × 1.9 cm) and blocks (12.5 × 3.75 × 2.5 cm) cut from the sapwood of cottonwood and southern pine were vacuum-pressure impregnated with the individual heartwood species extract, linseed oil, or a mixture of each individual wood extract and linseed oil. For comparison, solid heartwood stakes and blocks of the wood species used to obtain extracts were also included in the tests. All samples were exposed for five years to decay and termites at a test site in southern Mississippi using ground contact (AWPA E7) and ground proximity (AWPA E26) tests. Results showed that extract-oil mixtures imparted higher termite and decay resistance in cottonwood and southern pine than linseed oil only or the individual heartwood species extract in both tests. However, these treatments were as not effective as to commercially used wood preservatives, copper naphthenate (CuN) or disodium octaborate tetrahydrate (DOT) in either test. Moreover, solid heartwood P. roxburghii stakes were completely decayed and attacked by termites after five years in the ground contact test. In contrast, C. deodara stakes were slightly attacked by termites and moderately attacked by decay fungi. However, T. grandis and D. sissoo stakes showed slight to superficial attack by termites and decay fungi in ground contact test. In contrast, T. grandis and D. sissoo blocks showed slight decay fungi attack in above-ground tests. However, termites did not attack T. grandis, D. sissoo, and C. deodara blocks. However, decay fungi moderately attacked C. deodara blocks, and P. roxburghii blocks were severely attacked by decay fungi and termites in the above-ground test.

6.
Microorganisms ; 8(5)2020 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-32397554

RESUMEN

The effects of leaf litter on moisture content and fungal decay development in above-ground wood specimens were assessed. Untreated southern pine specimens were exposed with or without leaf litter contact. Two types of leaf litter were evaluated; aged (decomposed) and young (early stages of decomposition). The moisture content of specimens was monitored, and specimens were periodically removed for visual evaluation of decay development. In addition, amplicon-based sequencing analysis of specimens and associated leaf litter was conducted at two time points. Contact with either type of leaf litter resulted in consistently higher moisture contents than those not in contact with leaf litter. Visually, evident decay developed most rapidly in specimens in contact with the aged leaf litter. Analysis of amplicon-based sequencing revealed that leaf litter contributes a significant amount of the available wood decay fungal community with similar communities found in the litter exposed wood and litter itself, but dissimilar community profiles from unexposed wood. Dominant species and guild composition shifted over time, beginning initially with more leaf saprophytes (ascomycetes) and over time shifting to more wood rotting fungi (basidiomycetes). These results highlight the importance of the contributions of leaf litter to fungal colonization and subsequent decay hazard for above-ground wood.

7.
Environ Sci Pollut Res Int ; 27(3): 3076-3085, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31838694

RESUMEN

This study evaluated the effect of wood extracts from Tectona grandis, Dalbergia sissoo, Cedrus deodara, and Pinus roxburghii combined with linseed oil as protectants of two non-durable wood species against the termite, Heterotermes indicola. Heartwood blocks (19 × 19 × 19 mm) and wood shavings were extracted using an ethanol/toluene (2:1) solvent system. Results of choice and no-choice tests with solvent-extracted and non-extracted heartwood blocks showed greater wood mass loss from termite feeding on solvent-extracted blocks compared with non-extracted blocks for all wood species. Significantly higher termite mortality was observed after termite exposure to non-extracted blocks compared with extracted blocks for all durable species. Sapwood blocks of two non-durable wood species (southern pine and cottonwood) were vacuum/pressure impregnated separately with each of the four types of extract at a concentration of 7.5 mg ml-1, linseed oil (20%) and a mixture of oil (20%) and extracts (4.25 mg ml-1) for the laboratory and field tests. Results showed that extract-oil mixture imparted significantly higher termite resistance compared with linseed or extracts alone under laboratory conditions. This apparent synergistic effect was clearly noted when linseed oil was combined with extracts from T. grandis or D. sissoo followed by an extract-oil mixture using C. deodara. These extract oil mixtures showed significantly less weight loss for the treated non-durable wood species and higher termite mortality (83-100%) compared with the control treatments and other extract-linseed oil mixtures tested. Treatment of both non-durable wood species with T. grandis + oil and D. sissoo + oil prevented termite damage compared with other treatments when blocks and stakes were exposed in the field for a period of 2 years. Results of the current study indicated that a mixture of a particular heartwood extract with linseed oil has potential to be used as environmentally friendly wood protectants.


Asunto(s)
Isópteros , Aceite de Linaza , Extractos Vegetales/toxicidad , Madera , Animales , Cucarachas , Sinergismo Farmacológico
8.
Environ Entomol ; 47(3): 741-748, 2018 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-29528387

RESUMEN

Heterotermes indicola (Wasmann) (Blattodea: Rhinotermitidae) is a species of subterranean termite that is a destructive pest of wood and wood products in Pakistan. This study evaluated the antioxidant and antienzyme potential of heartwood extractives against H. indicola. Heartwood extractives of four durable wood species, Tectona grandis (L.f), Dalbergia sissoo (Roxb.), Cedrus deodara (Roxb.), and Pinus roxburghii (Sarg.) were removed from wood shavings via soxhlet extraction with an ethanol:toluene solvent system. The antioxidant potential of the extractive compounds was determined using the DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging test. Results showed maximum antioxidant activity for extractives of D. sissoo. D. sissoo had the lowest IC50 (the concentration where 50% inhibition of the DPPH radical is obtained) at 28.83 µg/ml among the heartwood extractives evaluated. This antioxidant activity, however, was not concentration dependent as was observed in the other heartwood extractives tested. At the maximum test concentration, T. grandis showed the highest percent inhibition at 89.7%, but this inhibition was lower compared to the positive control antioxidant compounds butylated hydroxytoluene and quercetin. When termites were fed filter paper treated with IC50s of the extractives and control compounds, glutathione S-transferase activity in the guts of H. indicola workers was significantly reduced by T. grandis and D. sissoo extractives. Similarly, esterase activity was reduced more by P. roxburghii extractives compared to control antioxidant treatments and other tested extractives. However, none of the extractives examined significantly reduced the activity of catalase enzymes in H. indicola compared to treatments with the antioxidant control compounds.


Asunto(s)
Antioxidantes/farmacología , Isópteros/enzimología , Extractos Vegetales/farmacología , Madera/química , Animales , Tracto Gastrointestinal/enzimología
9.
Front Microbiol ; 8: 1997, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29093702

RESUMEN

Soil samples were collected from field sites in two AWPA (American Wood Protection Association) wood decay hazard zones in North America. Two field plots at each site were exposed to differing preservative chemistries via in-ground installations of treated wood stakes for approximately 50 years. The purpose of this study is to characterize soil fungal species and to determine if long term exposure to various wood preservatives impacts soil fungal community composition. Soil fungal communities were compared using amplicon-based DNA sequencing of the internal transcribed spacer 1 (ITS1) region of the rDNA array. Data show that soil fungal community composition differs significantly between the two sites and that long-term exposure to different preservative chemistries is correlated with different species composition of soil fungi. However, chemical analyses using ICP-OES found levels of select residual preservative actives (copper, chromium and arsenic) to be similar to naturally occurring levels in unexposed areas. A list of indicator species was compiled for each treatment-site combination; functional guild analyses indicate that long-term exposure to wood preservatives may have both detrimental and stimulatory effects on soil fungal species composition. Fungi with demonstrated capacity to degrade industrial pollutants were found to be highly correlated with areas that experienced long-term exposure to preservative testing.

10.
Sci Rep ; 7: 41798, 2017 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-28139778

RESUMEN

The role of ions in the fungal decay process of lignocellulose biomaterials, and more broadly fungal metabolism, has implications for diverse research disciplines ranging from plant pathology and forest ecology, to carbon sequestration. Despite the importance of ions in fungal decay mechanisms, the spatial distribution and quantification of ions in lignocellulosic cell walls and fungal hyphae during decay is not known. Here we employ synchrotron-based X-ray fluorescence microscopy (XFM) to map and quantify physiologically relevant ions, such as K, Ca, Mn, Fe, and Zn, in wood being decayed by the model brown rot fungus Serpula lacrymans. Two-dimensional XFM maps were obtained to study the ion spatial distributions from mm to submicron length scales in wood, fungal hyphae with the dried extracellular matrix (ECM) from the fungus, and Ca oxalate crystals. Three-dimensional ion volume reconstructions were also acquired of wood cell walls and hyphae with ECM. Results show that the fungus actively transports some ions, such as Fe, into the wood and controls the distribution of ions at both the bulk wood and cell wall length scales. These measurements provide new insights into the movement of ions during decay and illustrate how synchrotron-based XFM is uniquely suited study these ions.


Asunto(s)
Hongos/metabolismo , Iones/metabolismo , Lignina/metabolismo , Microscopía Fluorescente , Sincrotrones , Rayos X , Madera/química , Madera/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA