Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chemphyschem ; : e202400283, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38634178

RESUMEN

Halocarbons have important industrial applications, but because of their contribution to global warming and the fact that they can cause ozone depletion, they are considered highly toxic. Hence, the techniques that can capture and recover the used halocarbons with energy-efficient methods have been recently received greater attention. In this contribution, we report the capture of dichlorodifluoromethane (R12), which has high global warming and ozone depletion potential, using covalent organic polymers (COPs). The defect-engineered COPs were synthesized and demonstrated outstanding sorption capacities, ~226 wt % of R12 combined with linear-shaped adsorption isotherms. We further identified the plausible microscopic adsorption mechanism of the investigated COPs via grand canonical Monte Carlo simulations applied to non-defective and a collection of atomistic models of the defective COPs. The modeling work suggests that significant R12 adsorption performance is attributed to a gradual increment of porosities due to isolated/interconnected micro-/meso-pore channels and the change of the long-range ordering of both COPs. The successive hierarchical-pore-filling mechanism promotes R12 molecular adsorption via moderate van der Waals adsorbate-adsorbent interactions in the micropores of both COPs at low pressure followed by adsorbate-adsorbate interactions in the extra-voids created at moderate to high pressure ranges. This continuous pore-filling mechanism makes defective COPs as promising sorbents for halocarbon adsorption.

2.
ChemSusChem ; 13(10): 2602-2612, 2020 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-32227672

RESUMEN

ZIF-8 was synthesized in supercritical carbon dioxide (scCO2 ). In situ powder X-ray diffraction, ex situ microscopy, and simulations provide an encompassing view of the formation of ZIF-8 and intermediary ZnO@ZIF-8 composites in this nontraditional solvent. Time-resolved imaging exposed divergent physicochemical reaction pathways from previous studies of the growth of anisotropic ZIF-8 core@shell structures in traditional solvents. Synthetically relevant physiochemical properties of scCO2 were integrated into classical nucleation theory, relating interfacial forces, calculated through DFTB+ based molecular dynamics (MD), with 3D nucleation outcomes. The kinetics of crystallization were examined and displayed a characteristic signature of time- and temperature-dependent mechanisms over the extent of the reaction. Lastly, it is shown that subtle factors, such as the extent of reaction and the size/shape of sacrificial templates can tailor ZIF-8 composition and size, eliciting control over hierarchical porosity in a nonconventional green solvent.

3.
Chem Commun (Camb) ; 46(4): 538-40, 2010 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-20062854

RESUMEN

Three interpenetrated metal-organic supramolecular isomers were synthesised using a flexible tetrahedral organic linker and Zn(2) clusters that sorb CO(2) preferably over N(2), H(2) and methane at room temperature.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA